Transcriptomics in the 21st century: a review of achievements and limitations
https://doi.org/10.31677/2072-6724-2025-77-4-247-261
Abstract
A transcriptome, being a complete set of RNA molecules transcribed by the genome of a cell or organism at a specific time, is a dynamic and informative object of research in modern biology. Its variability and ability to reflect responses to internal and external stimuli make transcriptome analysis an indispensable tool for understanding fundamental biological processes, developing diagnostic approaches, and applying it to fields such as agriculture, ecology, and biotechnology. Studying the transcriptome makes it possible to identify the differential expression of genes in response to various factors, decipher the molecular mechanisms of disease pathogenesis, identify potential targets for therapeutic intervention, and optimize biotechnological processes. This study presents an analysis of the evolution of transcriptome technologies in the 21st century, covering a range of methodological approaches from traditional gene expression analysis methods, such as reverse transcription followed by polymerase chain reaction (RT-PCR) and microarrays, to modern high-throughput next-generation sequencing (RNA-seq) methods. A comparative assessment of the advantages and disadvantages of each method is provided, with a focus on their specific applications in various fields, including medical diagnostics, agriculture, environmental research, and the food industry. Special attention is paid to discussing the capabilities and limitations of each technology in the context of solving specific problems, such as identifying disease biomarkers, studying the adaptation of organisms to changing environmental conditions, and optimizing biotechnological processes.
About the Authors
Yu. R. SerazetdinovaRussian Federation
postgraduate student in the field of 2.7.1 Biotechnology of Food Products, Medicinal and Biologically Active Substances
Kemerovo
D. E. Kolpakova
Russian Federation
postgraduate student in the field of 4.3.3 Food Systems
Kemerovo
A. Naike
Russian Federation
postgraduate student in the field of 4.3.5 Biotechnology of Food Products and Biologically Active Substances
Kemerovo
I. I. Pleshivtsev
Russian Federation
postgraduate student in the field of 4.3.3 Food Systems
Kemerovo
L. K. Asyakina
Russian Federation
Doctor of Technical Sciences, Associate Professor, Professor at the Department of Bionanotechnology
Kemerovo
A. Yu. Prosekov
Russian Federation
Doctor of Technical Sciences, Doctor of Biological Sciences, Professor at the Department of Bionanotechnology
Kemerovo
References
1. Lowe R., Shirley N., Bleackley M. [et al.], Transcriptomics technologies, PLoS Comput Biol, 2017, Vol. 13 (5), pp. e1005457, DOI: 10.1371/journal.pcbi.1005457.
2. Lamas A., Regal P., Vázquez B. [et al.], Transcriptomics: A powerful tool to evaluate the behavior of foodborne pathogens in the food production chain, Food Res Int, 2019, Vol. 125, pp. 108543, DOI: 10.1016/j.foodres.2019.108543.
3. Fawkner-Corbett D., Antanaviciute A., Parikh K. [et al.], Spatiotemporal analysis of human intestinal development at single-cell resolution, Cell, 2021, Vol. 184 (3), pp. 810–826, DOI: 10.1016/j.cell.2020.12.016.
4. Velculescu V.E., Zhang L., Zhou W. [et al.], Characterization of the yeast transcriptome, Cell, 1997, Vol. 88 (2), pp. 243–251, DOI: 10.1016/s0092-8674(00)81845-0.
5. Tuteja R., Tuteja N., Serial Analysis of Gene Expression: Applications in Human Studies, J Biomed Biotechnol, 2004, Vol. 2004 (2), pp. 113–120, DOI: 10.1155/S1110724304308119.
6. Wang Z., Gerstein M., Snyder M., RNA-Seq: a revolutionary tool for transcriptomics, Nat Rev Genet, 2009, Vol. 10 (1), pp. 57–63, DOI: 10.1038/nrg2484.
7. Matsumura H., Reuter M., Krüger D.H. [et al.], SuperSAGE, Methods Mol Biol, 2008, Vol. 387, pp. 55–70, DOI: 10.1007/978-1-59745-454-4_4.
8. Brenner S., Johnson M., Bridgham J. [et al.], Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays, Nat Biotechnol, 2000, Vol. 18 (6), pp. 630–634, DOI: 10.1038/76469.
9. Schena M., Shalon D., Davis R.W. [et al.], Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, 1995, Vol. 270 (5235), pp. 467–470, DOI: 10.1126/science.270.5235.467.
10. Schena M., Shalon D., Davis R.W. [et al.], Transcriptomics in the RNA-seq era, Curr Opin Chem Biol, 2013, Vol. 17 (1), pp. 4–11, DOI: 10.1016/j.cbpa.2012.12.008.
11. Wong Y.P., Othman S., Lau Y.L. [et al.], Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms, J Appl Microbiol, 2018, Vol. 124 (3), pp. 626–643, DOI: 10.1111/jam.13647.
12. Nonis A., De Nardi B., Nonis A., Choosing between RT-qPCR and RNA-seq: a back-of-the-envelope estimate towards the definition of the break-even-point, Anal Bioanal Chem, 2014, Vol. 406 (15), pp. 3533–3536, DOI: 10.1007/s00216-014-7687-x.
13. de Boer M.E., Berg S., Timmermans M.J. [et al.], High throughput nano-liter RT-qPCR to classify soil contamination using a soil arthropod, BMC Mol Biol, 2011, Vol. 12, pp. 11, DOI: 10.1186/1471-2199-12-11.
14. Mortazavi A., Williams B., McCue K. [et al.], Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat Methods, 2008, Vol. 5, pp. 621–628, DOI: 10.1038/nmeth.1226.
15. X. Shen, Y. Zhao, Z. Wang [et al.], Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics, Lab Chip, 2022, Vol. 22 (24), pp. 4774–4791, DOI: 10.1039/d2lc00633b.
16. Climente-González H., Porta-Pardo E., Godzik A. [et al.], The Functional Impact of Alternative Splicing in Cancer, Cell Rep, 2017, Vol. 20 (9), pp. 2215–2226, DOI: 10.1016/j.celrep.2017.08.012.
17. Hager J., Making and using spotted DNA microarrays in an academic core laboratory, Methods Enzymol, 2006, Vol. 410, pp. 135–168, DOI: 10.1016/S0076-6879(06)10007-5.
18. Afzal M., Manzoor I., Kuipers O.P., A Fast and Reliable Pipeline for Bacterial Transcriptome Analysis Case study: Serine-dependent Gene Regulation in Streptococcus pneumonia, J Vis Exp, 2015, No. 98, pp. 52649, DOI: 10.3791/52649.
19. Chavan P., Joshi K., Patwardhan B., DNA microarrays in herbal drug research, Evid Based Complement Alternat Med, 2006, Vol. 3 (4), pp. 447–457, DOI: 10.1093/ecam/nel075.
20. Kurdyukov S., Bullock M., DNA Methylation Analysis: Choosing the Right Method, Biology (Basel), 2016, Vol. 5 (1), pp. 3, DOI: 10.3390/biology5010003.
21. Yang X., Kui L., Tang M. [et al.], High-Throughput Transcriptome Profiling in Drug and Biomarker Discovery, Front Genet, 2020, Vol. 11, pp. 19, DOI: 10.3389/fgene.2020.00019.
22. Wang X., He Y., Mackowiak B. [et al.], MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases, Gut, 2021, Vol. 70 (4), pp. 784–795, DOI: 10.1136/gutjnl-2020-322526.
23. Lancova K., Dip R., Antignac J.P. [et al.], Detection of hazardous food contaminants by transcriptomics fingerprinting, Trends in Analytical Chemistry, 2011, Vol. 30 (2), pp. 181–191.
24. Men X., Ma J., Wu T. [et al.], Transcriptome profiling identified differentially expressed genes and pathways associated with tamoxifen resistance in human breast cancer, Oncotarget, 2017, Vol. 9 (3), pp. 4074–4089, DOI: 10.18632/oncotarget.23694.
25. Kodama Y., Shumway M., Leinonen R., International Nucleotide Sequence Database Collaboration. The Sequence Read Archive: explosive growth of sequencing data, Nucleic Acids Res, 2012, Vol. 40, pp. 54–56, DOI: 10.1093/nar/gkr854.
26. Conesa A., Madrigal P., Tarazona S. [et al.], A survey of best practices for RNA-seq data analysis, Genome Biol, 2016, Vol. 17, pp. 13, DOI: 10.1186/s13059-016-0881-8.
27. Mocellin S., Rossi C.R., Pilati P. [et al.], Quantitative real-time PCR: a powerful ally in cancer research, Trends Mol Med, 2003, Vol. 9 (5), pp. 189–195, DOI: 10.1016/s1471-4914(03)00047-9.
28. Monsalve-Lancheros A, Ibáñez-Pinilla M, Ramírez-Clavijo S., Detection of mammagloblin by RT-PCR as a biomarker for lymph node metastasis in breast cancer patients: A systematic review and meta-analysis, PLoS One, 2019, Vol. 14 (5), pp. e0216989, DOI: 10.1371/journal.pone.0216989.
29. Guo M., Li X., Zhang S. [et al.], Real-time quantitative RT-PCR detection of circulating tumor cells from breast cancer patients, Int J Oncol, 2015, Vol. 46 (1), pp. 281–289, DOI: 10.3892/ijo.2014.2732.
30. Dooley T.P., Curto E.V., Reddy S.P. [et al.], Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: screening by DNA microarrays, Inflamm Bowel Dis, 2004, Vol. 10 (1), pp. 1–14, DOI: 10.1097/00054725-200401000-00001.
31. Rodrigues D., Souza T., Jennen D.G.J. [et al.], Drug-induced gene expression profile changes in relation to intestinal toxicity: State-of-the-art and new approaches, Cancer Treat Rev, 2019, Vol. 77, pp. 57–66, DOI: 10.1016/j.ctrv.2019.06.004.
32. Wang X., Li N., Li W. [et al.], Advances in Transcriptomics in the Response to Stress in Plants, Glob Med Genet, 2020, Vol. 7 (2), pp. 30–34, DOI: 10.1055/s-0040-1714414.
33. Park S.C., Kim H.S., Lee H.U. [et al.], Overexpression of Arabidopsis YUCCA6 enhances environment stress tolerance and inhibits storage root formation in sweetpotato, Plant Biotechnol Rep, 2019, Vol. 13, pp. 345–352, DOI: 10.1007/s11816-019-00537-0.
34. Zhang J., Miao H., Xie B. [et al.], Genomic and Transcriptional Analysis of Banana Ovate Family Proteins Reveals Their Relationship with Fruit Development and Ripening, Biochem Genet, 2020, Vol. 58 (3), pp. 412–429, DOI: 10.1007/s10528-020-09951-4.
35. Zahid G., Kaçar Y.A., Shimira F. [et al.], Recent progress in omics and biotechnological approaches for improved mango cultivars in Pakistan, Genetic Resources and Crop Evolution, 2022, Vol. 69 (6), pp. 2047–2065, DOI: 10.1007/s10722-022-01413-7.
36. Ge Y., Cheng Z., Si X. [et al.], Transcriptome Profiling Provides Insight into the Genes in Carotenoid Biosynthesis during the Mesocarp and Seed Developmental Stages of Avocado (Persea americana), Int J Mol Sci, 2019, Vol. 20 (17), pp. 4117, DOI: 10.3390/ijms20174117.
37. Li J., Zhu L., Hull J.J. [et al.], Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly), Plant Biotechnol J, 2016, Vol. 14 (10), pp. 1956–1975, DOI: 10.1111/pbi.12554.
38. Guo W.L., Chen B.H., Chen X.J. [et al.], Transcriptome profiling of pumpkin (Cucurbita moschata Duch.) leaves infected with powdery mildew, PLoS One, 2018, Vol. 13 (1), pp. e0190175, DOI: 10.1371/journal.pone.0190175.
39. Yergeau E., Tremblay J., Joly S. [et al.], Soil contamination alters the willow root and rhizosphere metatranscriptome and the root-rhizosphere interactome, ISME J, 2018, Vol. 12 (3), pp. 869–884, DOI: 10.1038/s41396-017-0018-4.
40. Bashiardes S., Zilberman-Schapira G., Elinav E., Use of Metatranscriptomics in Microbiome Research, Bioinform Biol Insights, 2016, Vol. 10, pp. 19–25, DOI: 10.4137/BBI.S34610.
41. Brulle F., Morgan A.J., Cocquerelle C. [et al.], Transcriptomic underpinning of toxicant-mediated physiological function alterations in three terrestrial invertebrate taxa: a review, Environ Pollut, 2010, Vol. 158 (9), pp. 2793–2808, DOI: 10.1016/j.envpol.2010.06.019.
42. Hirooka S., Hirose Y., Kanesaki Y. [et al.], Acidophilic green algal genome provides insights into adaptation to an acidic environment, Proc Natl Acad Sci USA, 2017, Vol. 114 (39), pp. E8304–E8313, DOI: 10.1073/pnas.1707072114.
43. Huang J.B., Zou Y., Zhang X. [et al.], Ribose phosphate isomersase 1 Influences Root Development by Acting on Cell Wall Biosynthesis, Actin Organization, and Auxin Transport in Arabidopsis, Front Plant Sci, 2020, Vol. 10, pp. 1641, DOI: 10.3389/fpls.2019.01641.
44. Samad A., Pelletier G., Sguin Kim A. [et al.], Understanding Willow Transcriptional Response in the Context of Oil Sands Tailings Reclamation, Front. Plant Sci, 2022, Vol. 13, pp. 857535, DOI: 10.3389/fpls.2022.857535.
45. Hara-Yamamura H., Fukushima T., Tan L.C. [et al.], Transcriptomic analysis of HepG2 cells exposed to fractionated wastewater effluents suggested humic substances as potential inducer of whole effluent toxicity, Chemosphere, 2020, Vol. 240, pp. 124894, DOI: 10.1016/j.chemosphere.2019.124894.
46. Chun B.H., Han D.M., Kim H.M. [et al.], Metabolic Features of Ganjang (a Korean Traditional Soy Sauce) Fermentation Revealed by Genome-Centered Metatranscriptomics, mSystems, 2021, Vol. 6 (4), pp. e0044121, DOI: 10.1128/mSystems.00441-21.
47. Hu X., Wang K., Chen M. [et al.], Profiling the composition and metabolic activities of microbial community in fermented grain for the Chinese strong-flavor Baijiu production by using the metatranscriptome, high-throughput 16S rRNA and ITS gene sequencings, Food Res Int, 2020, Vol. 138, pp. 109765, DOI: 10.1016/j.foodres.2020.109765.
48. Chen S., He S., Xu X. [et al.], Transcriptomic responses of foodborne pathogens to the food matrix, Current Opinion in Food Science, 2021, Vol. 42, pp. 23–30, DOI: 10.1016/j.cofs.2021.02.019.
49. Fang S., Chen B., Zhang Y. [et al.], Computational Approaches and Challenges in Spatial Transcriptomics, Genomics Proteomics Bioinformatics, 2023, Vol. 21 (1), pp. 24–47, DOI: 10.1016/j.gpb.2022.10.001.
50. Bagyinszky E., Giau V.V., An S.A., Transcriptomics in Alzheimer’s Disease: Aspects and Challenges, Int J Mol Sci, 2020, Vol. 21 (10), pp. 3517, DOI: 10.3390/ijms21103517.
Review
For citations:
Serazetdinova Yu.R., Kolpakova D.E., Naike A., Pleshivtsev I.I., Asyakina L.K., Prosekov A.Yu. Transcriptomics in the 21st century: a review of achievements and limitations. Bulletin of NSAU (Novosibirsk State Agrarian University). 2025;(4):247-261. (In Russ.) https://doi.org/10.31677/2072-6724-2025-77-4-247-261
JATS XML


























