Preview

Bulletin of NSAU (Novosibirsk State Agrarian University)

Advanced search

Realization of the bioresource potential of common basil, Ocimum basilicum L. Stella varieties in vertical farms by agrobiophotonics methods

https://doi.org/10.31677/2072-6724-2025-77-4-64-76

Abstract

Plants respond to the spectral ratio of the intensity of photon fluxes and this allows them to influence biomass, morphogenesis, the content of nutrients and secondary metabolites. The specific and varietal characteristics of plants, as well as the methods of their cultivation, determine the requirements for the type of lighting, and its choice can be made experimentally. Objective: to evaluate the effect of the spectral composition of lighting commercial vertical farms with LEDs Miniferner 1.3 Quantum board 180 x 390 Samsung lm301b 3500K+660nm Osram SSL + UV380+FR740 +IR850 on morphogenesis, accumulation of biomass and essential oil of basil, Ocimum basilicum L. Stella varieties. The spectral composition of the studied illumination is characterized by a greater proportion of the red (600–700 nm) and far red (700–800 nm) parts of the spectrum, but with a smaller amount of green (500–600 nm) light (172.96 and 155.19; 25.06 and 16.19; 117.92 and 139.01 micromol/m2 ·c for the variant and control, respectively), ultraviolet (380 nm) and infrared (850 nm) radiation are present. The ratio of red to far red is 6.90 and 9.59 in the variant and control, respectively, the illumination intensity had no effect on the wet weight of plants: 30.7±4.2 and 31.0±3.7 g (150-200 mmol/m2 ·c), and 27.7±1.5 and 27.7±1.5 g (>300 mmol/m2 ·c) in option and control, respectively. The change in the lighting spectrum led to an increase in the average height of plants on the 14th, 20th, 22nd and 28th days after sowing. At the time of cutting (37 days), the proportion of plants with the 3rd, 4th, 5th and 6th pairs of leaves, with lateral shoots and the onset of the budding phase increased. The dry weight of the crop increased from 3.43% to 5.17 %, and the yield of essential oil increased by 1.7 times (from 3.81 to 4.03 mg/kg). According to the component composition of the essential oil, the Stella variety can be attributed to the linalool-eugenol chemotype. Conclusion: The realization of the biological potential of the ordinary Stella basil by using lamps with a higher proportion of the red and far red spectrum compared to lamps used on commercial vertical farms with the presence of ultraviolet and infrared radiation accelerates the passage of the phenophases of the vegetative stage, helps to increase the yield of dry plant mass, which ensures an increase in the amount of essential oil obtained with a high content of linalool, eugenol and 1,8-cineol.

About the Authors

L. A. Osintseva
Novosibirsk State Agrarian University
Russian Federation

Doctor of Biological Sciences, Professor

Novosibirsk



A. O. Fedosenko
Novosibirsk State Agrarian University
Russian Federation

Master’s degree

Novosibirsk



V. L. Petukhov
Novosibirsk State Agrarian University
Russian Federation

Doctor of Biological Sciences, Professor

Novosibirsk



A. I. Zheltikov
Novosibirsk State Agrarian University
Russian Federation

Doctor of Agricultural Sciences, Professor

Novosibirsk



V. G. Marenkov
Novosibirsk State Agrarian University
Russian Federation

Candidate of Biological Sciences, Associate Professor

Novosibirsk



References

1. Boos G.V., Prikupec L.B., Truhachjov V.I. [i dr.], Vestnik Rossijskoj sel’sklhozjajstvennoj nauki, 2022, No. 5, pp. 36– 41. (In Russ.)

2. Filatov D.A., Avdeeva E.A., Oponin I.Ju., Jelektrotehnologii i jelektrooborudovanie v APK, 2023, Vol. 70, No. (51), pp. 10–18. (In Russ.)

3. Kovalevskaja T.E. i dr., Fotonika: slovar’ terminov (Photonics: Glossary of Terms), Novosibirsk: Izd-vo SO RAN, 2004, 342 p. (In Russ.)

4. Sosnin Je.A., Kul’chin Ju.N., Astafurova T.P., VKVO-2019 Agrobiofotonika: https://cyberleninka.ru/article/n/stanovlenie-agrobiofotoniki-kak-zakonomernoe-razvitie-nauchnyh-napravleniy [data obrashhenija 29.05.2025]. (In Russ.)

5. Tan J.Y., Ker P.J., Lau K.Y. [et al.], Applications of photonics in agriculture sector: A review, Molecules, 2019, Vol. 24, No. 10, pp. 20–25.

6. Prikupec L.B., Svetotehnika. Special’nyj vypusk: Mezhdunarodnaja nauchno-tehnicheskaja konferencija po primeneniju svetodiodnyh fitoobluchatelej, 2019, pp. 8–12. (In Russ.)

7. FGBUN Institut avtomatiki i processov upravlenija Dal’nevostochnogo otdelenija Rossijskoj akademii nauk (Federal State Budgetary Scientific Institution Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences): https://www.iacp.dvo.ru/structure/collective/2614/2621/2625 [data obrashhenija 29.05.2025]. (In Russ.)

8. NPL «Agrobiofotonika» FGAOU VO «Nacional’nyj issledovatel’skij Tomskij politehnicheskij universitet» (Scientific and Production Laboratory “Agrobiofontika” of the Federal State Autonomous Educational Institution of Higher Education “National Research Tomsk Polytechnic University”), https://abiofotonica.ru/# [data obrashhenija 29.05.2025]. (In Russ.)

9. Park Y., Runkle E.S., Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photone efficacy: White versus blue plus red radiation, PloS ONE, 2018, Vol. 13 (8), pp. e0202386, DOI: 10.1371/journal.pone.0202386.

10. Kul’chin Ju.N., Foton-jekspress, 2019, No. 6 (168), pp. 64. (In Russ.)

11. Kondrat’eva V.V., Voronkova T.V., Semonova M.V. i dr., Vestnik KrasGAU, 2022, No. 9, pp. 3–10, DOI: 10.36718/1819-4036-2022-9-3-10. (In Russ.)

12. Hammock H.A., Kopsell D.A., Sams C.E., Application timing and duration of LED and HPS supplements differentially influence yield, nutrient bioaccumulation, and light use efficiency of greenhouse basil across seasons, Frontiers in plant science, 2023, Vol. 14, pp. 1174823, DOI: 10.3389/fpls.2023.1174823.

13. Kabachevskaja E.M., Suhoveeva S.V., Trofimov Ju.V. [i dr.], Zhurnal prikladnoj spektroskopii, 2023, Vol. 90, No. 6, pp. 910–916. (In Russ.)

14. Kul’chin Ju.N., Bulgakov V.P., Subbotin E.P. [i dr.], Vestnik DVO RAN, 2021, No. 4, pp. 87–98, DOI: 10.37102/0869-7698_2021_218_04_10. (In Russ.)

15. Prikupec L.B., Boos G.V., Terehov V.G. [i dr.], Svetotehnika, 2018, No. 5, pp. 6–2. (In Russ.)

16. Ivanickih A.S., Tarakanov I.G., Voprosy biologicheskoj, medicinskoj i farmacevticheskojhimii, 2022, Vol. 25, No. 11, pp. 3–9. (In Russ.)

17. Shajdullin A.H., Agrobioinzhenerija 2021 (Agrobioengineering 2021), Conference papers collection, Moscow, 2021, pp. 269–273. (In Russ.)

18. Jokic L., Pappert I., Khanh T.Q. [et al.], Effect of Light Intensity and Light Spectrum of LED Light Sources on Photosynthesis and Secondary Metabolite Synthesis in Ocimum basilicum, Plants (Basel, Switzerland), 2025, Vol. 14 (9), pp. 1334, Doi: 10.3390/plants14091334 [data obrashhenija 20.05.2025].

19. Belopukhov S.L., Dmitrieva V.L., Luneva V.E. [et al.], Treasures Induced by Narrow-Spectrum: Volatile Phenylpropanoid and Terpene Compounds in Leaves of Lemon Basil (Ocimum × citriodorum Vis.), Sweet Basil (O. basilicum L.) and Bush Basil (O. minimum L.) Under Artificial Light City Farm Conditions, Plants (Basel, Switzerland), 2025, Vol. 4 (9), pp. 403, DOI: 10.3390/plants14030403 [data obrashhenija 29.05.2025].

20. Narouei Z., Goil S.A.H., Sabzalian M.R. [et al.], Effect of light emitting diodes (LEDs) irradiation on the functional quality and shelf life of basil microgreens, J. Essential Oil Research, 2024, Vol. 36 (4), pp. 367–379 [data obrashhenija 29.05.2025].

21. Sale A.I., Uthairatanakij A., Laohakunjit N. [et al.], Pre-harvest supplemental LED treatments led to improved postharvest quality of sweet basil leaves, J. Photochem Photobiol, 2023, Vol. 248, pp. 112788, DOI: 10.1016/j.jphotobiol.2023.112788.

22. Hammock H.A., Sams C.E., Variation in supplemental lighting quality influences key aroma volatiles in hydroponically grown ‘Italian Large Leaf’ basil, Frontiers in plant science, 2023, Vol. 14, pp. 11846–11864, DOI: 10.3389/ fpls.2023.1184664 [data obrashhenija 20.05.2025].

23. d’Aquino L., Cozzolino R., Malorni L. [et al.], Light Flux Density and Photoperiod Affect Growth and Secondary Metabolism in Fully Expanded Basil Plants, Foods (Basel, Switzerland), 2024, Vol. 13 (14), pp. 2273, DOI: 10.3390/foods13142273 [data obrashhenija 29.05.2025].

24. Poljakova M.N., Martirosjan Ju.C., Dilovarova T.A. [i dr.], Sel’skohozjajstvennaja biologija, 2015, T. 50, No. 1, pp. 124–130. (In Russ.)

25. Timoshenko P.V., Sbornik izbrannyh statej nauchnoj sessii TUSUR, 2020, No. 1–2, pp. 291–293. (In Russ.)

26. Carvalho S.D., Schwieterman M.L., Abrahan C.E. [et al.], Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum), Frontiers in Plant Science, 2016, Vol. 7: ttps://www.frontiersin.org/articles/10.3389/fpls.2016.01328/full.

27. Bantis F., Ouzounis T., Radoglou K., Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success, Scientia Horticulturae, 2016, Vol. 198, pp. 277–183.

28. Sakalauskaitė J., Viškelis P., Duchovskis P. [et al.], Supplementary UV-B irradiation effects on basil (Ocimum basilicum L.) growth and phytochemical properties, Journal of Food, Agriculture & Environment, 2012, Vol. 10 (3, 4), pp. 342–346.

29. Sipos L., Balazs L., Szekely G. [et al.], Optimization of basil (Ocimum basilicum L.) production in LED light environments – a review, Scientia Horticulturae, 2021, Vol. 289: https://www.sciencedirect.com/science/article/pii/S0304423821005938?via%3Dihub.

30. Zotov V.S., Bolychevskaja Ju.V., Hapchaeva S.A. [i dr.], Prikladnaja biohimija i mikrobiologija, 2020, Vol. 56, No. 3, pp. 283–291. (In Russ.)

31. Zheljazkov V.D., Callahan A., Cantrell Ch.L., Yield and Oil Composition of 38 Basil (Ocimum basilicum L.) Accessions Grown in Mississippi, J. of Agricultural and Food Chemistry, 2008, Vol. 56 (1), pp. 241–245.

32. Kravchuk K.I., Nesterova N.V., Ermakova V.Ju. [i dr.], Medicinskoe obrazovanie i vuzovskaja podgotovka, 2018, No. 3 (13)–4 (14), pp. 133–137. (In Russ.)

33. Chang X., Alderson P., Wright C., Enhanced UV-B radiation alters basil (Ocimum basilicum L.) Growth and stimulates the synthesis of volatile oils, Horticulture and Forestry, 2009, Vol. 1, pp. 27–31.


Review

For citations:


Osintseva L.A., Fedosenko A.O., Petukhov V.L., Zheltikov A.I., Marenkov V.G. Realization of the bioresource potential of common basil, Ocimum basilicum L. Stella varieties in vertical farms by agrobiophotonics methods. Bulletin of NSAU (Novosibirsk State Agrarian University). 2025;(4):64-76. (In Russ.) https://doi.org/10.31677/2072-6724-2025-77-4-64-76

Views: 32

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6724 (Print)