Development of a method for luminescent control of moisture content in corn and wheat grindings in feed preparation
https://doi.org/10.31677/2072-6724-2025-76-3-48-58
Abstract
The results of the study of the optical properties of corn and wheat grain grinds at different moisture content are presented in the studied samples. A technique for varying the moisture content in grain grinds with optical measurements to determine correlation and spectral dependencies is proposed. A diffraction spectrofluorimeter CM2203 (Solar CJSC, Belarus) was used for optical spectral measurements. Measurements of the spectral characteristics of excitation n(λ) with extended scanning in synchronous mode were carried out in the range from 230–600 nm, with an average sensitivity of a photoelectron multiplier, pulse duration tdl = 20 microseconds, pulse delay t = 0.75 microseconds. Synchronous excitation spectra of corn grain grinding with varying moisture content, photoluminescence spectra of corn grinding for λ = 362 nm with varying moisture content, photoluminescence spectra of wheat grinding with varying moisture content for λ = 362 nm were measured. The dependences of the photoluminescence flux with varying moisture content of grain grinds and their linear approximations for corn (λ = 362 nm), for wheat (λ = 362 nm) and (λ = 424 nm) are determined. Statistically reliable dependences on humidity can be obtained for integral photoluminescence fluxes when excited by 362 nm radiation for corn grinds and 362 nm and 424 nm for wheat grinds.
About the Authors
M. V. BelyakovRussian Federation
Doctor of Technical Sciences.
Moscow
E. A. Nikitin
Russian Federation
Candidate of Technical Sciences, Senior researcher.
Moscow
F. E. Vladimirov
Russian Federation
Researcher.
Moscow
References
1. Lednev V.N., Sdvizhenskii P.A., Dorohov A.S., Gudkov S.V., Pershin S.M., Improving LIBS analysis of non-flat heterogeneous samples by signals mapping, Applied Optics, 2023, T. 62, No. 8, pp. 2030, DOI: 10.1364/ao.473111.
2. Nikitin E.A., Belyakov M.V., Efremenkov I.Yu., Blagov D.A., Mamedova R.A., Sviridov A.S., Alipichev A.Y., Noncontact assessment of the nutritional value of feed with optical technologies, Agricultural Engineering, 2024, T. 26, No. 3, pp. 51–57, DOI: 10.26897/2687-1149-2024-3-51-57.
3. Lednev V.N., Grishin M.Ya., Sdvizhensky P.A., Kurbanov R.K., Litvinov M.A., Gudkov S.V., Pershin S.M., Fluorescence mapping of agricultural fields utilizing drone-based lidar, Photonics, 2022, T. 9, No. 12, pp. 963, DOI: 10.3390/photonics8120563.
4. Galeev R.R., Samarin I.S., Andreeva Z.V., Vestnik NGAU (Novosibirskij gosudarstvennyj agrarnyj universtet), 2017, No. 4 (45), pp. 9–15. (In Russ.)
5. SHevchenko V.A., Solov’ev A.M., Firsov I.P., Gasparyan I.N., Optimizaciya tekhnologicheskih priemov vozdelyvaniya kukuruzy v nechernozemnoj zone Rossii (Optimization of technological methods of corn cultivation in the non-chernozem zone of Russia), Moscow, 2015, 329 p.
6. SHtejnberg T.S., Semikina L.I., Kontrol’ kachestva produkcii, 2017, No. 2, pp. 32–37. (In Russ.)
7. SHevchenko V.A., Solov’ev A.M., Melioraciya i vodnoe hozyajstvo: problemy i puti resheniya (Land reclamation and water management: problems and solutions), Proceedings of the Conference Title, 2016, pp. 54–57. (In Russ.)
8. Manickavasagan A., Rathna Priya T.S., Characterising corn grain using infrared imaging and spectroscopic techniques: a review, Journal of Food Measurement and Characterization, 2021, Vol. 15, pp. 3234–3249.
9. Cisneros-Carrillo H., Hernandez-Aguilar C., Dominguez-Pacheco A., Cruz-Orea A., Zepeda-Bautista R., Thermal analysis and artificial vision of laser irradiation on corn, Discover Applied Sciences, 2020, Vol. 2, No. 1606.
10. Antonov R.YU., Nauchnoe priborostroenie, 2021, T. 31, No. 2, pp. 84–92, DOI: 10.18358/np-31-2-i8492. (In Russ.)
11. Ivanov YU.A., Bulatov S.YU., Tareeva O.A., Malyshev G.S., Tekhnika i tekhnologii v zhivotnovodstve, 2024, T. 14, No. 1, pp. 54–63, DOI: 10.22314/27132064-2024-1-54. (In Russ.)
12. Bulatov S.YU., Gerasimov E.A., Malyshev G.S., Tareeva O.A., Vestnik Omskogo gosudarstvennogo agrarnogo universiteta, 2024, No. 1 (53), pp. 124–139. (In Russ.)
13. Belopuhov S.L., SHanaeva E.A., ZHarkih O.A., Dmitrevskaya I.I., Razumeev K.E., ZHevnerov A.V., YUldashbaeva A.YU., Ovcy, kozy, sherstyanoe delo, 2023, No. 1, pp. 43–48. (In Russ.)
14. SHevchenko V.A., Solov’ev A.M., Bondareva G.I., Popova N.P., Sel’skij mekhanizator, 2023, No. 1–2, pp. 28–31. (In Russ.)
15. Morozov N.M., Kirsanov V.V., Cench YU.S., Sel’skohozyajstvennye mashiny i tekhnologii, 2023, T. 17, No. 1, pp. 11–18, DOI: 10.22314/2073-7599-2023-17-1-11-18. (In Russ.)
16. Kulikova N.N., Mityakov E.S., SHostko V.I., Innovacionnaya ekonomika: informaciya, analitika, prognozy, 2024, No. 2, pp. 171–176, DOI: 10.47576/2949-1894.2024.2.2.021. (In Russ.)
17. Hernández-Aguilar C., Domínguez-Pacheco A., Cruz-Orea A., Zepeda-Bautista R., Depth Profiles in Maize (Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy, International journal of Thermophysics, 2015, Vol. 36, pp. 891–899.
18. Chen X., Yao Z., He D., Investigation of Optical Properties and Activity of Wheat Stripe Rust Urediospores, Agriculture, 2023, Vol. 13, No. 1316, DOI: 10.3390/agriculture13071316.
19. Zienko S.I., Belyakov M.V., Malyshkin V.V., Novye metody i sredstva spektral’no-lyuminescentnogo analiza semyan rastenij (New methods and means of spectral-luminescent analysis of plant seeds), Smolensk: Universum, 2020, 184 p.
20. Belyakov M.V., Vestnik NGIEI, 2016, No. 4 (59), pp. 38–50. (In Russ.)
Review
For citations:
Belyakov M.V., Nikitin E.A., Vladimirov F.E. Development of a method for luminescent control of moisture content in corn and wheat grindings in feed preparation. Bulletin of NSAU (Novosibirsk State Agrarian University). 2025;(3):48-58. (In Russ.) https://doi.org/10.31677/2072-6724-2025-76-3-48-58
JATS XML


























