Bio-conversion of lactose to ethanol by Kluyveromyces lactis yeast as a stage of cheese whey utilization
https://doi.org/10.31677/2072-6724-2025-75-2-106-115
Abstract
Growing accumulation of lactose-containing waste resulting from the growth of cheese production in Russia and throughout the world has increased interest in the search for new effective biotechnologies for their processing, including through the bioconversion of lactose into ethanol. The work used cheese whey with an initial lactose content of 40 g/L and a pH of 4.84, three industrial strains of Kluyveromyces lactis Y-2035, Y-2037, Y-2040, and the reference strain Saccharomyces cerevisae Y-187. We carried out yeast cultivation in a FA-2 fermenter (Prointech, Russia) for 48 hours in cheese whey with the addition of nutrient solutions and zinc ions, at a temperature of 34 °C, stirring, and aeration. As indicators of the dynamics and efficiency of the biotechnological process we choose pH, the number of yeast cells, the concentration of protein, lactose and ethanol in the culture medium for periodical control using commercial kits. After that, we calculated the growth rate, percentage and average rate of lactose utilization, average rate of ethanol formation, and fermentation efficiency. As a result, it was shown that the K. lactis Y-2035, K. lactis Y-2037 and K. lactis Y-2040 can utilize from 76.3 to 86.0 % lactose, while from 17.7 to 21.0 g/l of ethanol is formed in the medium. The fermentation efficiency varies in K. lactis strains from 75.6 to 89.7 % versus 5.6 % in the reference strain S. Cerevisiae Y-187. Among those studied the K. lactis Y-2037 strain has the maximum capacity for lactose utilization and ethanol formation. It is proposed to use technology for processing lactose-containing dairy industry waste by converting lactose into ethanol with yeast cultures K. lactis for obtaining promising raw materials, reducing pollution, as well as for the internal production of bioethanol, and to recommend the K. lactis Y-2037 strain for this purpose.
About the Authors
K. S. AbbasRussian Federation
postgraduate student
Volgograd
V. V. Novochadov
Russian Federation
Doctor of Medical Sciences, Professor
Volgograd
References
1. Prosekov A.Yu., Syrodelie i maslodelie, 2024, No. 4, pp. 3–6. (In Russ.)
2. Buchanan D., Martindale W., Romeih E., Hebishy E., Recent advances in whey processing and valorisation: technological and environmental perspectives, International Journal of Dairy Technology, 2023, Vol. 76, pp. 291–312, DOI: 10.1111/1471-0307.12935.
3. Bušić A., Mardetko N., Kundas S., Morzak G., Belskaya H., Ivancic S., Mirela K.D., Novak S., Šantek B., Bioethanol production from renewable raw materials and its separation and purification: a review, Food Technology and Biotechnology, 2018, Vol. 56, No. 3, pp. 289–311, DOI: 10.17113/ftb.56.03.18.5546.
4. Okamoto K., Nakagawa S., Kanawaku R., Kawamura S., Ethanol production from cheese whey and expired milk by the brown rot fungus Neolentinus lepideus, Fermentation, 2019, Vol. 5, No. 2, pp. e49, DOI: 10.3390/fermentation5020049.
5. Adegboye M.F., Ojuederie O.B., Talia P.M., Babalola O.O., Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges, Biotechnology for Biofuels, 2021, Vol. 14, No. 1, pp. e5, DOI: 10.1186/s13068-020-01853-2.
6. Papademas P., Kotsaki P., Technological utilization of whey towards sustainable exploitation, Advances in Dairy Research, 2019, Vol. 7, Iss. 4, pp. 1–10. DOI: 10.35248/2329-888X.19.7.231.
7. Zimina Y.A., Postnova M.V., Abbas K.S., Ivanova G.S., Novochadov V.V., Promising renewable raw for ethanol biosynthesis, European Journal of Molecular Biotechnology, 2020, Vol. 8, No. 1, pp. 42–51, DOI: 10.13187/ejmb.2020.1.42.
8. Zabed H., Sahu J., Akter S., Nasrulhaq Amru B., Faruq G., Bioethanol production from renewable sources: Current perspectives and technological progress, Renewable and Sustainable Energy Reviews, 2017, Vol. 71, pp. 475–501, DOI: 10.1016/j.rser.2016.12.076.
9. Lip K.Y.F., García-Ríos E., Costa C.E., Guillamón J.M., Domingues L., Teixeira J., van Gulik W.M., Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at suband- supra optimal temperatures, Biotechnology Reports, 2020, Vol. 26, pp. e00462, DOI: 10.1016/j.btre.2020.e00462.
10. Zandona E., Blažić M., Režek Jambrak A., Whey utilization: sustainable uses and environmental approach, Food Technology and Biotechnology, 2021, Vol. 59, No. 2, pp. 147–161, DOI: 10.17113/ftb.59.02.21.6968.
11. Varela J.A., Puricelli M., Ortiz-Merino R.A., Giacomobono R., Braun-Galleani S., Wolfe K.H., Morrissey J.P., Origin of lactose fermentation in Kluyveromyces lactis by interspecies transfer of a neo-functionalized gene cluster during domestication, Current Biology, 2019, Vol. 29, pp. 4284–4290, DOI: 10.1016/j.cub.2019.10.044.
12. Lyutova L.V., Naumov G.I., Shnyreva A.V., Naumova E.S., Molekularnaya Biologiya, 2021, Vol. 55, No. 1, pp. 75– 85, DOI: 10.31857/S0026898421010109. (In Russ.)
13. Vu H.H., Jin C., Chang J.H., Structural basis for substrate recognition of glucose-6-phosphate dehydrogenase from Kluyveromyces lactis, Biochemical and Biophysical Research Communications, 2021, Iss. 553, pp. 85–91, DOI: 10.1016/j.bbrc.2021.02.088.
14. Abbas K.S., Lushnikova E.S., Novochadov V.V., Prirodnye sistemy i resursy, 2024, No. 1, pp. 18–25, DOI: 10.15688/nsr.jvolsu.2024.1.2. (In Russ.)
15. Feng C.T., Du X., Wee J., Microbial and chemical analysis of non-Saccharomyces yeasts from Chambourcin hybrid grapes for potential use in winemaking, Fermentation, 2021, Vol. 7, No. 1, pp. e15, DOI: 10.3390/fermentation7010015.
16. Koushki M., Jafari M., Azizi M., Comparison of ethanol production from cheese whey permeate by two yeast strains, Journal of Food Science and Technology, 2012, Vol. 49, pp. 614–619, DOI: 10.1007/s13197-011-0309-0.
17. Kalinina I.V., Fatkullin R.I., Popova N.V., Sharipova A.R., Vestnik Yuzhno-Ural’skogo Gosudarstvennogo Universiteta, Seriya ‘Pishchevye i Biotekhnologii’, 2018, Vol. 6, No. 4, pp. 74–82, DOI: 10.14529/food180410. (In Russ.)
18. Bilal M., Ji L., Xu Y., Xu S., Lin Y., Iqbal H.M.N., Cheng H., Bioprospecting Kluyveromyces marxianus as a robust host for industrial biotechnology, Frontiers in Bioengineering and Biotechnology, 2022, Vol. 10, pp. e851768, DOI: 10.3389/fbioe.2022.851768.
19. Ohstrom A.M., Buck A.E., Du X., Wee J., Evaluation of Kluyveromyces spp. for conversion of lactose in different types of whey from dairy processing waste into ethanol, Frontiers in Microbiology, 2023, Vol. 14, pp. e1208284, DOI: 10.3389/fmicb.2023.1208284.
20. Zhou X., Hua X., Huang L., Xu Y., Bio-utilization of cheese manufacturing wastes (cheese whey powder) for bioethanol and specific product (galactonic acid) production via a two-step bioprocess, Bioresource Technology, 2019, Vol. 272, pp. 70–76, DOI: 10.1016/j.biortech.2018.10.001.
21. Marcus J.F., DeMarsh T.A., Alcaine S.D., Upcycling of whey permeate through yeast-and Mold-driven fermentations under anoxic and Oxic conditions, Fermentation, 2021, Vol. 7, No. 1, pp. e16, DOI: 10.3390/fermentation7010016.
22. Zharykbasova K.S., Vestnik NGAU (Novosibirskij gosudarstvennyj agrarnyj universitet), 2009, No. 3(11), pp. 24–26. (In Russ.)
23. Tesfaw A., The current trends of bioethanol production from cheese whey using yeasts: biological and economical perspectives, Frontiers in Energy Research, 2023, Vol. 11, pp. e11, DOI: 10.3389/fenrg.2023.1183035/full.
24. Rocha-Mendoza D., Kosmerl E., Krentz A., Zhang L., Badiger S., Miyagusuku-Cruzado G., Mayta-Apaza A., Giusti M., Jiménez-Flores R., García-Cano I., Invited review: acid whey trends and health benefits. Journal of Dairy Science, 2021, Vol. 104, pp. 1262–1275, DOI: 10.3168/jds.2020-19038.
Review
For citations:
Abbas K.S., Novochadov V.V. Bio-conversion of lactose to ethanol by Kluyveromyces lactis yeast as a stage of cheese whey utilization. Bulletin of NSAU (Novosibirsk State Agrarian University). 2025;(2):106-115. (In Russ.) https://doi.org/10.31677/2072-6724-2025-75-2-106-115