Using ISSRmarkers for genotyping Calligonum aphyllum (Pall.) Guerke, growing in the Astrakhan region and Stavropol region
https://doi.org/10.31677/2072-6724-2025-75-2-61-68
Abstract
To date, the issues of genotyping of various groups of woody and shrubby plants that grow in arid conditions remain relevant to determine breeding-valuable genotypes. In this regard, the purpose of the study was to test ISSR markers and use them for subsequent genotyping of various ecotopic populations of C. aphyllum native to the Astrakhan Region and Stavropol Territory. The effectiveness of the ISSR primers used was evaluated using four main parameters of the information content of primers: polymorphism information index (PIC), effective multiplexing coefficient (EMR), marker index (MI) and resolution (Rp). Using 9 primers, a total of 88 DNA fragments of the C. aphyllum genome were amplified, of which 77 were polymorphic. The total number of amplified DNA bands depended on the primer used and ranged from 8 to 15. The average PIC value using nine primers was 0.381, while the standard deviation was only 0.0043. The MI values ranged from 1,293 to 2,371, with an average of 1,723. The highest MI values were found in primers UBC808, UBC856 and UBC891 – 1,850, 1,908 and 2,371, respectively. The resolution index values ranged from 2,400 (UBC808) to 7,771 (UBC891). The average RP value was 4,508, which indicates the high efficiency of the primers studied in detecting genetic differences in C. aphyllum populations. Populations in the Astrakhan region have 8.2% higher polymorphism than populations in the Stavropol Territory. Both populations from the Astrakhan region (Cal2 and Cal3) show similar values of all parameters of genetic variability. The research results can be used in breeding work to create new forms of C. aphyllum.
About the Authors
P. A. KuzminRussian Federation
Candidate of Agricultural Sciences
Volgograd
E. S. Lushnikova
Russian Federation
Laboratory researcher
Volgograd
I. M. Romanova
Russian Federation
Engineer researcher
Volgograd
References
1. Eckardt N.A., Ainsworth E.A., Bahuguna R.N. [et al.], Climate change challenges, plant science solutions, The Plant Cell, 2023, Vol. 35, No. 1, pp. 24–66, DOI: 10.1093/plcell/koac303.
2. Ali S., Tyagi A., Park S. [et al.], Deciphering the plant microbiome to improve drought tolerance: mechanisms and perspectives, Environmental and Experimental Botany, 2022, Vol. 201, Art. 104933, DOI: 10.1016/j.envexpbot.2022.104933.
3. Alikhanova S., Bull J.W., Review of nature-based solutions in dryland ecosystems: the aral sea case study, Environmental Management, 2023, Vol. 72, No. 3, pp. 457–472, DOI: 10.1007/s00267-023-01822-z.
4. Archer E., Obura D., Leadley P. [et al.], Establishing a climate target within the post-2020 Global Biodiversity Framework, PLOS Climate, 2022, Vol. 1, No. 12, Art. e0000106, DOI: 10.1371/journal.pclm.0000106.
5. Nikonoshina N.A., Martynenko N.A., Nechaeva Yu.S. [et al.], Sovremennye problemy nauki i obrazovaniya, 2016, No. 3, pp. 403–403. (In Russ.)
6. Rajora O.P., Zinck J.W.R., Genetic diversity, structure and effective population size of old-growth vs. second-growth populations of keystone and long-lived conifer, eastern white pine (Pinus strobus): conservation value and climate adaptation potential, Frontiers in genetics, 2021, Vol. 12., Art. 650299, DOI: 10.3389/fgene.2021.650299.
7. Danusevičius D., Rajora O.P., Kavaliauskas D. [et al.], Stronger genetic differentiation among within-population genetic groups than among populations in Scots pine provides new insights into within-population genetic structuring, Scientific Reports, 2024, Vol. 14, No. 1, Art. 2713, DOI: 10.1038/s41598-024-52769-y.
8. Liu Y., Zheng C., Su X. [et al.], Comparative analysis and characterization of the chloroplast genome of Krascheninnikovia ceratoides (Amarathaceae): a xerophytic semi-shrub exhibiting drought resistance and high-quality traits, BMC Genomic Data, 2024, Vol. 25, No. 1, Art. 10, DOI: 10.1186/s12863-024-01197-y.
9. Cui Y.N., Wang F.Z., Yang C.H. [et al.], Transcriptomic profiling identifies candidate genes involved in the salt tolerance of the xerophyte Pugionium cornutum, Genes, 2019, Vol. 10, No. 12, Art. 1039, DOI: 10.3390/genes10121039.
10. Song F, Li T., Burgess KS. [et al.], Complete plastome sequencing resolves taxonomic relationships among species of Calligonum L. (Polygonaceae) in China, BMC Plant Biology, 2020, Vol. 20, pp. 1–15, DOI: 10.1186/s12870-020-02466-5.
11. Romanenko A. K., Solonkin A.V., Solomentseva A. S. [et al.], Agrarnyy vestnik Urala, 2022, No. 6(221), pp. 2–15, DOI: 10.32417/1997-4868-2022-221-06-2-15. (In Russ.)
12. Podoprigorov Yu.N., Khyupinin A.A., Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional’noe obrazovanie, 2023, No. 2(70), pp. 288–298, DOI: 10.32786/2071-9485-2023-02-33. (In Russ.)
13. Rybashlykova L.P., Turko S.Yu., Maslova M.I., Puti povysheniya effektivnosti oroshaemogo zemledeliya, 2024, Vol. 93, No. 2, pp. 166–177. (In Russ.)
14. Fedulova T.P., Kondratieva A.M., Yevlakov P.M. [et al.], Lesotekhnicheskiy zhurnal, 2016, Vol. 6, No. 4(24), pp. 105– 111, DOI: 10.12737/23441. (In Russ.)
15. Mesfer ALshamrani S., Safhi F.A., Alshaya D.S. [et al.], Genetic diversity using biochemical, physiological, karyological and molecular markers of Sesamum indicum L., Frontiers in Genetics, 2022, Vol. 13, Art. 1035977, DOI: 10.3389/fgene.2022.1035977.
16. Belyaev A.I., Krylov P.A., Pugacheva A.M. [et al.], Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional’noe obrazovanie, 2023, No. 2(70), pp. 30–42, DOI: 10.32786/2071-9485-2023-02-03. (In Russ.)
17. Amiteye S., Basic concepts and methodologies of DNA marker systems in plant molecular breeding, Heliyon, 2021, Vol. 7, No. 10, DOI: 10.1016/j.heliyon.2021.e08093.
18. Diallo S., Badiane F.A., Kabkia B.N.P.A. [et al.], Genetic diversity and population structure of cowpea mutant collection using SSR and ISSR molecular markers, Scientific Reports, 2024, Vol. 14, No. 1, Art. 31833, DOI: 10.1038/s41598-024-83087-y.
19. Petolescu C., Sarac I., Popescu S. [et al.], Assessment of genetic diversity in alfalfa using DNA polymorphism analysis and statistical tools, Plants, 2024, Vol. 13, No. 20, Art. 2853, DOI: 10.3390/plants13202853.
20. Shestibratov K.A., Baranov O.Y., Mescherova E.N. [et al.], Structure and phylogeny of the curly birch chloroplast genome, Frontiers in Genetics, 2021, Vol. 12, Art. 625764, DOI: 10.3389/fgene.2021.625764.
21. Yeh F.C., POPGENE (version 1.3. 1). Microsoft window-bases freeware for population genetic analysis, http://www. ualberta.ca/~fyeh/,1999.
22. Gasmi A., Triki T., Benabderrahim M.A., Assessing phenolic and molecular diversity of arta (Calligonum comosum L,), a wild Tunisian desert plant, South African Journal of Botany, 2022, Vol. 151, pp. 166–174, DOI: 10.1016/j.sajb.2022.09.044.
23. Chesnokov Yu.V., Artemyeva A.M., Sel’skokhozyaystvennaya biologiya, 2015, No. 5, pp. 571–578, DOI: 10.15389/agrobiology.2015.5.571rus. (In Russ.)
Review
For citations:
Kuzmin P.A., Lushnikova E.S., Romanova I.M. Using ISSRmarkers for genotyping Calligonum aphyllum (Pall.) Guerke, growing in the Astrakhan region and Stavropol region. Bulletin of NSAU (Novosibirsk State Agrarian University). 2025;(2):61-68. (In Russ.) https://doi.org/10.31677/2072-6724-2025-75-2-61-68