Preview

Bulletin of NSAU (Novosibirsk State Agrarian University)

Advanced search

Differentiation of zinc accumulation in the body of the landras pigs

https://doi.org/10.31677/2072-6724-2025-74-1-151-162

Abstract

The presented data pertains to the assessment of zinc levels in the liver, kidneys, lungs, spleen, and myocardium of pigs of the Landras breed. The work was performed on clinically healthy animals, fed in a large pig -breeding complex of the Altai Territory. The technology employed by pigs was three-phase, and the typical conditions were in accordance with GOST 28839–90. The pigs were fed for a duration of 160 days using compound feeds of serial output, accompanied by certificates of conformity, and supplemented with vitamin-mineral premixes that corresponded to precise feeding standards. A zinc level assessment was performed using an atomic emission spectral analysis with inductive-tied plasma. For the processing of primary material, Microsoft Office Excel was utilized, along with the programming language R (version 4.4.1), and RStudio version analysis version 2024.09.0 (2009–2024 Posit Software, PBC). It was established that the distribution of zinc in the liver and kidneys differed from the distribution of the Gauss. In some cases there were emissions, and dispersions that were not homogeneous. Using a median, an increasing ranking range of zinc content in the organs was formed: myocardium < lungs < kidney < spleen < liver, in numerical terms: 1 : 1 : 1 : 1.2 : 1.4 : 2.4 mg/kg. In terms of variability, the smallest uniformity according to the point under consideration is characteristic of the liver. On the basis of the twill painting test, significant differences in the concentration of zinc are established (h = 88,485, df = 4, p < 0,0001). The pawn comparison demonstrated reliable differences in the level of the chemical element in the liver from all other internal organs and myocardial and additionally in pairs: “kidneys-light”, “spleen-lungs”, “kidney-myocardium”, “spleen-myocardium”. The method of agglomeration cluster analysis is allocated such an organ as a liver that has a maximum level of accumulation of the mineral, all other structures are cascaded up to the group with the minimum amount-“light-heart”. Phenotypes of distances between clusters are given. The results are suitable for determining the normative values of zinc content in the liver, kidneys, lungs, spleen and heart muscle of the lands of the Landras grown in Western Siberia.

About the Authors

O. A. Zaiko
Novosibirsk State Agrarian University
Russian Federation

Ph.D. in Biological Sciences

Novosibirsk



T. V. Konovalova
Novosibirsk State Agrarian University
Russian Federation

Senior Lecturer

Novosibirsk



O. S. Korotkevich
Novosibirsk State Agrarian University
Russian Federation

Doctor of Biological Sciences, Professor

Novosibirsk



V. L. Petukhov
Novosibirsk State Agrarian University
Russian Federation

Doctor of Biological Sciences, Professor

Novosibirsk



O. I. Sebezhko
Novosibirsk State Agrarian University
Russian Federation

PhD of Biological Sciences, Associate Professor

Novosibirsk



References

1. Cox J., Mann M., Is proteomics the new genomics? Cell, 2007, Vol. 130(3), pp. 395–398.

2. Aslam B., Basit M., Nisar M.A. [et al.], Proteomics: technologies and their applications, Journal of chromatographic science, 2017, Vol. 55(2), pp. 182–196.

3. Chellan P., Sadler P.J., The elements of life and medicines, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, Vol. 373(2037), pp. 20140182.

4. Ershov Yu.A., Osnovy molekulyarnoi diagnostiki. Metabolomika (Fundamentals of molecular diagnostics. Metabolomics), Moscow: GEOTAR-Media, 2016, 271 p. (In Russ.)

5. Campbell A.K., Save those molecules! Molecular biodiversity and life, Journal of Applied Ecology, 2003, Vol. 40(2), pp. 193–203.

6. Troy D.J., Kerry J.P., Consumer perception and the role of science in the meat industry, Meat Science, 2010, Vol. 86(1), pp. 214–226.

7. Ahmad R.S., Imran A., Hussain M.B., Nutritional composition of meat, Meat Science and Nutrition, 2018, Vol. 61(10.5772), P. 61–75.

8. Babicz M., Kasprzyk A., Kropiwiec-Domańska K., Influence of the sex and type of tissue on the basic chemical composition and the content of minerals in the sirloin and offal of fattener pigs, Canadian Journal of Animal Science, 2018, Vol. 99(2), pp. 343–348.

9. Rooke J.A., Flockhart J.F., Sparks N.H., The potential for increasing the concentrations of micro-nutrients relevant to human nutrition in meat, milk and eggs, The Journal of Agricultural Science, 2010, Vol. 148(5), pp. 603–614.

10. Diniz W.J.S., Banerjee P., Regitano L.C.A., Cross talk between mineral metabolism and meat quality: A systems biology overview, Physiological Genomics, 2019, Vol. 51(11), pp. 529–538.

11. Stepanova M.V., Sotnikova L.F., Zaitsev S.Y., Relationships between the content of micro-and macroelements in animal samples and diseases of different etiologies, Animals, 2023, Vol. 13(5), pp. 852.

12. Vasak M., Hasler D.W., Metallothioneins: new functional and structural insights, Current Opinion in Chemical Biology, 2000, Vol. 4(2), pp. 177–183.

13. Maret W., Zinc biochemistry: from a single zinc enzyme to a key element of life, Advances in Nutrition, 2013, Vol. 4(1), pp. 82–91.

14. Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E., Zinc and human health: an update, Archives of Toxicology, 2012, Vol. 86, pp. 521–534.

15. Andreini C., Banci L., Bertini I., Rosato A., Counting the zinc-proteins encoded in the human genome, Journal of Proteome Research, 2006, Vol. 5(1), pp. 196–201.

16. Leoni G., Rosato A., Perozzi G., Murgia C., Zinc proteome interaction network as a model to identify nutrient-affected pathways in human pathologies, Genes & Nutrition, 2014, Vol. 9(6), pp. 1–9.

17. Vallee B.L., Falchuk K.H., The biochemical basis of zinc physiology, Physiological reviews, 1993, Vol. 73(1), pp. 79–118.

18. Tsuji P.A., Canter J.A., Rosso L.E., Trace minerals and trace elements, Encyclopedia of food and health, 1st edn. Caballero B, Finglas PM, Toldrá F (eds), Oxford, Elsevier, 2016, pp. 331–338.

19. Frolova O.A., Tafeeva E.A., Bocharov E.P., Gigiena i sanitariya, 2017, Vol. 96(3), pp. 226–229. (In Russ.)

20. Global plan of action for animal genetic resources and the interlaken declaration, Rome, FAO, 2007, 37 p.

21. Sato S., Uemoto Y., Kikuchi T. [et al.], SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population, BMC Genetics, 2016, Vol. 17(60), pp. 1–17.

22. Zinov’eva N., Zhivotnovodstvo Rossii, 2019, No. S2, pp. 15–17. (In Russ.)

23. Zheltikov A.I., Petukhov V.L., Korotkevich O.S. [i dr.], Cherno-pestryi skot Sibiri (Black-and-white cattle of Siberia), Novosibirsk, 2012, 500 p. (In Russ.)

24. Zheltikov A.I., Kostomakhin N.M., Venediktova O.M. [i dr.], Glavnyi zootekhnik, 2017, No. 2, pp. 23–30. (In Russ.)

25. Petukhov V.L., Ernst L.K., Gudilin I.I. [i dr.], Geneticheskie osnovy selektsii zhivotnykh (The genetic basis of animal breeding), Moscow: Rosagropromizdat, 1989, 448 p. (In Russ.)

26. Petukhov V.L., Tikhonov V.N., Zheltikov A.I. [i dr.], Genofond skorospeloi myasnoi porody svinei (Gene pool of precocious meat breed of pigs), Novosibirsk, 2005, 631 p. (In Russ.)

27. Petukhov V.L., Tikhonov V.N., Zheltikov A.I. [i dr.], Genofond i fenofond sibirskoi severnoi porody i cherno-pestroi porodnoi gruppy svinei (Gene pool and phenofund of Siberian Northern breed and black-and-white breed group of pigs), Novosibirsk, 2012, 579 p. (In Russ.)

28. Zajko O.A., Izmenchivost` i korrelyacii ximicheskix e`lementov v organax i tkanyax svinej skorospeloj myasnoj porody` SM-1 (Variability and correlations of chemical elements in organs and tissues of pigs of early maturing meat breed SM-1), Candidate’s thesis, Novosibirsk, 2015, 183 p. (In Russ.)

29. Zaiko O.A., Nazarenko A.V., Koroleva I.A. [i dr.], Sibirskii vestnik sel’skokhozyaistvennoi nauki, 2021, No. 51(1), pp. 90–98. (In Russ.)

30. Nekrasova R.V., Golovina A.V., Makhaeva E.A. [i dr.], Normy potrebnostei molochnogo skota i svinei v pitatel’nykh veshchestvakh (Standards requirements of dairy cattle and pigs in nutrients), Moscow: Rossiiskaya akademiya nauk, 2018, 290 p. (In Russ.)

31. Syso A.I., Lebedeva M.A., Cherevko A.S. [et al.], Ecological and biogeochemical evaluation of elements content in soils and fodder grasses of the agricultural lands of Siberia, Journal of Pharmaceutical Sciences and Research, 2017, Vol. 9(4), pp. 368–374.

32. McGrath S., Zhao X., Steele R. [et al.], Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis, Statistical Methods in Medical Research, 2020, Vol. 29(9), pp. 2520–2537.

33. Narozhnykh K.N., Konovalova T.V., Fedyaev J.I. [et al.], Lead content in soil, water, forage, grains, organs and the muscle tissue of cattle in Western Siberia (Russia), Indian Journal of Ecology, 2018, Vol. 45(4), pp. 866–871.

34. Filipoiu D.C., Bungau S.G., Endres L. [et al.], Characterization of the toxicological impact of heavy metals on human health in conjunction with modern analytical methods, Toxics, 2022, Vol. 10(12), pp. 716.

35. Sposob opredeleniya soderzhaniya margantsa v pecheni sviney: pat. RU 2791231 S1 Ros. Federatsiya. № 2022109749, Zayko O.A., Nazarenko A.V., Konovalova T.V. [i dr.]; zayavl. 11.04.2022; opubl. 06.03.2023, Byul. No. 7, 8 p. (In Russ.)

36. Sposob opredeleniya urovnya tsinka v pochkakh sviney: pat. RU 2761031 S1 Ros. Federatsiya. № 2021101423, Zayko O.A., Nazarenko A.V., Sebezhko O.I. [i dr.]; zayavl.22.01.2021, opubl. 02.12.2021, Byul. No. 34, 6 p. (In Russ.)

37. Sposob opredeleniya soderzhaniya kadmiya v pecheni krupnogo rogatogo skota: pat. RU25911825 S1 Ros. Federatsiya. № 2015116391/15, Korotkevich O.S., Narozhnykh K.N., Konovalova T.V. [i dr.]; zayavl. 29.04.2015, opubl. 20.07.2016, Byul. No. 20, 5 p. (In Russ.)

38. Sposob opredeleniya kontsentratsii svintsa v legkikh krupnogo rogatogo skota: pat. RU 2602915 S1 Ros. Federatsiya. № 2015130994/15, Konovalova T.V., Korotkevich O.S., Narozhnykh K.N. [i dr.]; zayavl. 24.07.2015; opubl. 20.11.2016, Byul. No. 32, 6 p. (In Russ.)

39. Sebezhko O.I., Petukhov V.L., Shishin N.I. [et al.], Influence of anthropogenic pollution on interior parameters, accumulation of heavy metals in organs and tissues, and the resistance to disorders in the yak population in the Republic of Tyva, Journal of Pharmaceutical Sciences and Research, 2017, Vol. 9, No. 9, pp. 1530–1535.

40. Skal’nyi A.V., Rudakov I.A., Vestnik Orenburgskogo gosudarstvennogo universiteta, 2005, No. S2-2, pp. 4–8. (In Russ.)

41. Georgievskii V.I., Annenkov B.N., Samokhin V.T., Mineral’noe pitanie zhivotnykh (Mineral nutrition of animals), Moscow: Kolos, 1979, 471 p. (In Russ.)

42. Brown K.H., Wuehler S.E., Peerson J.M., The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency, Food and Nutrition Bulletin, 2001, Vol. 22(2), pp. 113–125.

43. Davin R., Manzanilla E.G., Klasing, K.C., Pérez J.F., Effect of weaning and in feed high doses of zinc oxide on zinc levels in different body compartments of piglets, Journal of Animal Physiology and Animal Nutrition, 2013, Vol. 97, pp. 6–12.

44. Stasiak K., Roślewska A., Stanek M. [et al.], The content of selected minerals determined in the liver, kidney and meat of pigs, Journal of Elementology, 2017, Vol. 22(4), pp. 1475–1483.

45. López-Alonso M., García-Vaquero M., Benedito J.L. [et al.], Trace mineral status and toxic metal accumulation in extensive and intensive pigs in NW Spain, Livestock Science, 2012, Vol. 146(1), pp. 47–53.

46. Puls R., Mineral levels in animal health: diagnostic data, 1994, Clearbrook, 356 p.

47. Burrough E.R., De Mille C., Gabler N.K., Zinc overload in weaned pigs: Tissue accumulation, pathology, and growth impacts, Journal of Veterinary Diagnostic Investigation, 2019, Vol. 31(4), pp. 537–545.

48. Black R.E., Zinc deficiency, infectious disease and mortality in the developing world, The Journal of Nutrition, 2003, Vol. 133(5), pp. 1485S–1489S.

49. Kaur K., Gupta R., Saraf S.A., Saraf S.K., Zinc: the metal of life, Comprehensive Reviews in Food Science and Food Safety, 2014, Vol. 13(4), pp. 358–376.

50. Erdman Jr.J.W., Macdonald I.A., Zeisel S.H. (ed.), Present knowledge in nutrition, Ames: Wiley-Blackwell, 2012, 1328 p.

51. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc, Washington: National Academies Press, 2001, 800 p.

52. Nazarenko A.V., Zaiko O.A., Konovalova T.V. [i dr.], Vestnik NGAU (Novosibirskii gosudarstvennyi agrarnyi universitet), 2023, No. 3(68), pp. 262–271. (In Russ.)

53. Zaiko O.A., Konovalova T.V., Korotkevich O.S. [i dr.], Svinovodstvo, 2023, No. 7, pp. 39–41. (In Russ.)


Review

For citations:


Zaiko O.A., Konovalova T.V., Korotkevich O.S., Petukhov V.L., Sebezhko O.I. Differentiation of zinc accumulation in the body of the landras pigs. Bulletin of NSAU (Novosibirsk State Agrarian University). 2025;(1):151-162. (In Russ.) https://doi.org/10.31677/2072-6724-2025-74-1-151-162

Views: 67


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6724 (Print)