Preview

Bulletin of NSAU (Novosibirsk State Agrarian University)

Advanced search

The effect of acceleratedelectronswith an energy of 1mevon the growth of agriculturalplantspathogens

https://doi.org/10.31677/2072-6724-2025-74-1-47-58

Abstract

It was shownthaton the third day aftersowingon the nutrientmedium of die-cutsfromirradiated low-energyaccelerated electronswith a maximum energy of 1MeVin the doserangefrom100 Gy to10000 Gy mycelialmat of fungi of variousstrains of the genera Fusarium and Alternaria, the greatestsuppression of the growth of mostfungi was observed whenir radiated at dose sfrom 5000 Gy and above. On average, the smallest growth of fungi was observed at a dose of 5000 Gy. In this case, the average colony diameter of the studied strains was 9.7 mm, which is 74.6% less than in the control samples. It is shown that electron beam treatment ledto a decrease in the diametricalgrowthrate for7of the 12 studiedstrains of phytopathogens. Irradiation of mycelium of fungi of variousstrainsat doses of 100, 1000 and 10000 Gy suppressed theirgrowthby 4-10, 13-39 and 62-63 %, respectively, dependingon the type of fungusanditsstrain. Fordosedependences of colonydiameters of strainsG-4andK-91Fusarium spp., TAN-1 Alternaria spp., T-1 and T-2 B.sorokiniana and SHK-25 and SHP-28 R.solani, explicit approximating sigmoidal dependen ceswereobtained, indicatingdifferentradiosensitivity of strains of phytopathogen icfungidue to theirmorphologicalfeatures. The most radiosensitive strain was SHK-25 (R. solani), the inhibition of colony growth of which was observed when irradiated at a dose of 1000 Gy. The least radiosensitive strains were TAN-1 (Alternaria spp.), S-1 (S. nodorum) and K-7.2, K-21 and K-37 – Fusarium spp., whose growth inhibition was not observed even when irradiated at doses of 10000 Gy.

About the Authors

A. A. Malyuga
Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences
Russian Federation

Doctor of Agricultural Sciences

Krasnoobsk



N. S. Chulikova
Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences
Russian Federation

PhD in Agricultural Sciences

Krasnoobsk



U. A. Bliznyuk
Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Russian Federation

Doctor of Physics and Mathematics, Department of Physics

Moscow



A. P. Chernyaev
Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Russian Federation

Doctor of Physics and Mathematics, Department of Physics

Moscow



P. Yu. Borshchegovskaya
Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Russian Federation

PhD in Physics and Mathematics, Department of Physics, Department of Chemistry

Moscow



D. S. Yurov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Russian Federation

PhD in Physics and Mathematics

Moscow



Ya. V. Zubritskaya
Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Russian Federation

1st category programmer, Department of Physics

Moscow



V. S. Ipatova
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Russian Federation

junior research fellow

Moscow



P. A. Shimko
Lomonosov Moscow State University
Russian Federation

student, Department of Physics

Moscow



I. A. Rodin
Lomonosov Moscow State University; Sechenov First Moscow State Medical University
Russian Federation

Doctor of Chemistry, Department of Chemistry, Department of Epidemiology and Evidence-Based Medicine

Moscow



References

1. Tupenevich S.M., Kornevye gnili khlebnykh zlakov i mery bor’by s nimi (Root rot of cereals and measures to combat them), Proceedings of the Conference Title, Moscow: Kolos, 1970, pp. 3–8. (In Russ.)

2. Bilai V.I., Fuzarii (Fusarium), Kiev: Naukova dumka, 1977, 442 p.

3. Bhandari D., Bhatta M.R., Duvellier E. [et al.], Foliar blight of wheat in Nepal: resistance breeding, epidemiology and disease management, Proceedings of the Fourth International Wheat Tan Spot and Spot Blotch Workshop, July 21–24, 2002.

4. Gagkaeva T.Y., Levitin M.M., Zuev E. [et al.], Terentjeva I. Evaluation of genetic resources of wheat and barley from Far East of Russia for resistance to Fusarium head blight, Journal of Applied Genetics 43A, 2002, Vol. 22, pp. 9–236.

5. http://www.indexfungorum.org

6. Zaikin B.A., Kartofel’ i ovoshchi, 2003, No. 3. pp. 25–27. (In Russ.)

7. Ivanyuk, V.G., Aleksandrov O.T, Mikologiya i fitoptologiya, 2000, No. 34(5), pp. 51–59. (In Russ.)

8. Ishkova T.I., Berestetskaya L.I., Gasich E.L. i dr., Uchebno-metodicheskoe posobie po diagnostike osnovnykh gribnykh boleznei khlebnykh zlakov (Educational and methodological guide for the diagnosis of the main fungal diseases of cereals), Sankt-Peterburg: VIZR, 2001, 73 p.

9. Leichenkova S.V., Selektsiya i semenovodstvo kartofelya (Potato breeding and seed production), Moscow, 1985, pp. 86–92.

10. Malyuga A.A., Konyaeva N.M., Enina N.N., Sistema zashchity kartofelya ot boleznei i vreditelei v Novosibirskoi oblasti (Potato protection system against diseases and pests in the Novosibirsk region), Novosibirsk, 2003, 140 p.

11. Peresypkin V.F., Atlas boleznei polevykh kul’tur (Atlas of diseases of field crops), Kiev: Urozhai, 1981, 248 p.

12. Sanina A.A., Antsiferova L.V., Mikologiya i fitopatologiya, 1991, Vol. 25, No. 3, pp. 250–252. (In Russ.)

13. Chumakov A.E., Zakharova T.I., Vredonosnost’ boleznei sel’skokhozyaistvennykh kul’tur (The harmfulness of diseases of agricultural crops), Moscow: Agropromizdat, 1990, 127 p.

14. Shipilova N.P., Vidovoi sostav i bioekologicheskie osobennosti vozbuditelei fuzarioza semyan zernovykh kul’tur (Species composition and bioecological features of the causative agents of fusarium of grain seeds), Abstract of candidate’s dissertation, Sankt-Peterburg, 1994, 23 p.

15. Sanin S.S., Vestnik OrelGAU, 2017, No. 3(66), pp. 35–39. (In Russ.)

16. Illarionov A.I., Sovremennye metody zashchity rastenii (Modern methods of plant protection), Voronezh, 2018, 307 p.

17. Dorokhov A.S., Starostin I.A., Eshchin A.V., Agroinzheneriya, 2021, No. 1(101), pp. 26–35. (In Russ.)

18. Bukhari S.A. [et al.], Magnetic field stimulation effect on germination and antioxidant activities of presown hybrid seeds of sunflower and its seedlings, Journal of Food Quality, 2021, Vol. 2021, No. 1, pp. 5594183, DOI: 10.1155/2021/5594/83.

19. Sîngeorzan S.M. [et al.], The influence of physical treatments on seed germination and seedling development of spruce (Piceaabies [L.] Karst.), Forests, 2022, Vol. 13, No. 9, pp. 1498, DOI: 10.3390/813091498.

20. Gudkov S.V. [et al.], Effect of ionizing radiation on physiological and molecular processes in plants, Journal of environmental radioactivity, 2019, Vol. 202, pp. 8–24, DOI: 10.1016/j.jenvrad.2019.02.001.

21. Volkova P.Y., Bondarenko E.V., Kazakova E.A., Radiation hormesis in plants, Current Opinion in Toxicology, 2022, Vol. 30, рр.100334.

22. Liou J., Streamlining Food Pest Control Through Irradiation.Applications of Accelerators and Other Sources of Ionizing Radiation, May, 2022, Vol. 63, https://www.iaea.org/bulletin/streamlining-food-pest-control-through-irradiation.

23. Madsen M., Industrial Irradiation for a Better World. Applications of Accelerators and Other Sources of Ionizing Radiation, May, 2022, Vol. 63–2, https://www.iaea.org/bulletin/industrial-irradiation-for-a-better-world.

24. GOST 12044-93, Semena sel’skokhozyaistvennykh kul’tur. Metody opredeleniya zarazhennosti boleznyami. Izdanie ofitsial’noe. Agricultural seeds. Methods for determination of diesease infestation (Seeds of agricultural crops. Methods for determining disease infection. The publication is official. Agricultural seeds. Methods for determining disease infection), Moscow: STANDARTINFORM, 2011, 162 p. (In Russ.)

25. Pidoplichko M.N., Griby-parazity kul’turnykh rastenii: opredelitel’. T. 3. Piknidial’nye griby (Fungi-parasites of cultivated plants: determinant. Vol. 3. Pycnidial fungi), Kiev: Naukova dumka,1978, 232 p.

26. Satton D., Fotergill A., Rinal’di M., Opredelitel’ patogennykh i uslovno patogennykh gribov (Determinant of pathogenic and conditionally pathogenic fungi), Moscow: Mir, 2001, 486 p.

27. Shipilova N.P., Ivashchenko V.G., Sistematika i diagnostika gribov roda Fusarium na zernovykh kul’turakh (Systematics and diagnostics of fungi of the genus Fusarium on grain crops), Sankt-Peterburg, 2008, 84 p.

28. Gannibal F.B., Monitoring al’ternariozov sel’skokhozyaistvennykh kul’tur i identifikatsiya gribov roda Alternaria (Monitoring of crop alternarioses and identification of fungi of the genus Alternaria), Sankt-Peterburg, 2011, 70 p.

29. Agostinelli S. [et al.], Geant4 – a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, Vol. 506, No. 3, pp. 250–303.

30. ASTM. Standard practice for using the Fricke reference-standard dosimetry system, 2006.

31. Kudryashov Yu.B., Radiatsionnaya biofizika (ioniziruyushchie izlucheniya) (Radiation biophysics (ionizing radiation), Moskow: Farmatlit, 2004, 412 p.

32. Jeong R.D. [et al.], Effects of ionizing radiation on postharvest fungal pathogens, The plant pathology journal, 2015, Vol. 31, No. 2, pp. 176.

33. Nemţanu M.R. [et al.], Inactivation effect of electron beam irradiation on fungal load of naturally contaminated maize seeds, Journal of the Science of Food and Agriculture, 2014, Vol. 94, No. 13, pp. 2668–2673.

34. Razdaivodin A.N. i dr., Radiatsionnye tekhnologii v sel’skom khozyaistve i pishchevoi promyshlennosti: sostoyanie i perspektivy (Radiation technologies in agriculture and food industry: state and prospects), 2018, pp. 114–117.

35. Dadachova E. [et al.], Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi, PLoS One, 2007, No. 2(5), e457, DOI: 10.1371/journal.pone.0000457, PMID 17520016.


Review

For citations:


Malyuga A.A., Chulikova N.S., Bliznyuk U.A., Chernyaev A.P., Borshchegovskaya P.Yu., Yurov D.S., Zubritskaya Ya.V., Ipatova V.S., Shimko P.A., Rodin I.A. The effect of acceleratedelectronswith an energy of 1mevon the growth of agriculturalplantspathogens. Bulletin of NSAU (Novosibirsk State Agrarian University). 2025;(1):47-58. (In Russ.) https://doi.org/10.31677/2072-6724-2025-74-1-47-58

Views: 74


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6724 (Print)