Evaluation of the effect of probiotic preparations with antioxidant and enzymatic action based on the Bacillus subtilis strain on the growth and physiological state of fish
https://doi.org/10.31677/2072-6724-2024-73-4-250-264
Abstract
The conducted experiments showed that fish grown using feed containing probiotics with different mechanisms of action — enzymatic and antioxidant — showed gains and fatness coefficient exceeding the control values by more than 7 % and 5–13 %, respectively, with a decrease in feed costs of 6.7 %. Analysis of weight distribution among the studied fish groups revealed that in the experiments the percentage of individuals with higher body weight was higher by 9.65 and 14.75 %, amounting to 58.16 and 63.26 %, respectively. In the open field test, the juvenile sterlet from the 2nd experimental group recorded orientation activity, which was lower than in the 1st experimental and control groups by 3.79 % and 1.61 %, respectively, amounting to 34.8 units/min. However, the background motor activity in this group was the highest — 36.78 units/min. In the 1st experimental and control groups, on the contrary, a decrease in this indicator was observed. It was found that in individuals of the experimental groups, an increase in the reaction to the primary stimulus (vibroacoustic stimulus) was observed, followed by a sharp decrease in activity when exposed to the second stimulus. This indicates the manifestation of a defensive reaction (freezing), characteristic of sturgeon fish. In the control group, the reaction to the primary stimulus also increases, but to a lesser extent, and then remains almost unchanged. After exposure to the third stimulus, the activity of individuals of the control group does not return to the original level, exceeding it by 13.35%. At the same time, in individuals of the experimental groups, the activity approaches the background level. The ratio of orienting activity to background activity (activation level) in fish of the second experimental group was 13.9% lower than in the first experimental and control groups. This indicates that fish from the first experimental and control groups exhibit higher activity when entering a new environment. At the same time, individuals from the second experimental group demonstrate more restrained motor behavior. The reactivity indices in the experimental groups under the influence of low-frequency sound are 1,46–10,54 % higher, under short-term light stimulus and constant light exposure they are lower by 12.09–27.47 % and by 9.72–14.88 % in the 2nd and 1st groups, respectively, compared to the control group. Fish fed with feeds with experimental probiotic additives demonstrated increased resistance to high temperature and salinity. The highest heat resistance and salt tolerance were shown by fish from the first experimental group. Probiotic preparations with targeted action stimulate growth and stabilize the physiological state of fish in extreme conditions.
About the Authors
E. N. PonomarevaRussian Federation
Doctor of biological sciences, professor
Rostov-on-Don
M. N. Sorokina
Russian Federation
Candidate of biological sciences, docent
Rostov-on-Don
V. A. Grigoriev
Russian Federation
Candidate of biological sciences
Rostov-on-Don
M. S. Mazanko
Russian Federation
Candidate of biological sciences
Rostov-on-Don
V. A. CHistyakov
Russian Federation
Doctor of biological sciences
Rostov-on-Don
References
1. FAO. 2024., The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action, Rome, pp. 264, DOI: 10.4060/cd0683en.
2. FAO. 2023., International markets for fisheries and aquaculture products – Fourth issue 2023, with January–June 2023 statistics, GLOBEFISH Highlights, No. 4–2023, pp. 73, Rome, DOI: 10.4060/cc9176en.
3. Kollegiya. Itogi deyatel’nosti Federal’nogo agentstva po rybolovstvu v 2023 godu i zadachi na 2024 god. Materialy k zasedaniyu. 2024 (Collegium. Results of the activities of the Federal Agency for Fisheries in 2023 and tasks for 2024. Materials for the meeting. 2024), available at: https://fish.gov.ru/wp-content/uploads/2024/03/sbornik-25-03-2024.pdf (data obrashcheniya: June 10, 2024). (In Russ.)
4. Ruby P., Ahilan B., Cheryl A., Selvaraj S., Recent trends in aquaculture technologies, Aqua Trop., 2022, Vol. 37, No. (1–4), рр. 29–36, DOI: 10.32381/JAT.2022.37.1-4.2.
5. Chizhaeva A.V., Oleinikova E.A., Amangeldy A.A., Alybaeva A.Zh., Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii, 2021, No. 9, рр. 12–16. (In Russ.)
6. Putri A.K., Permatasari1 M.N. Anjaini J., Application of probiotics in aquaculture jfas, J. Food. Agri. Sci. Lowl. Coast. Area, 2024, Vol. 1(2), рр. 24–36, URL: https://jfas.upnjatim.ac.id/index.php/jfas/index (дата обращения: 11.06.2024).
7. Jorgen S., Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. FAO/WHO. Archived from the original 2012, URL: https://www.fao.org/4/y6398e/y6398e.pdf (дата обращения: 10.06.2024).
8. Funk I. A., Ott E. F., Vestnik NGAU (Novosibirskii gosudarstvennyi agrarnyi universitet), 2023, No. 3 (68), рр. 302– 308, DOI: 10.31677/2072-6724-2023-68-3-302-308. (In Russ.)
9. Ushakova N.A., Pravdin V.G., Kravtsova L.Z. [et al.], Complex Bioactive Supplements for Aquaculture-Evolutionary Development of Probiotic Concepts, Probiotics and Antimicrobial Proteins, 2021, Vol. 13 (6), рр. 1696–1708, DOI: 10.1007/s12602-021-09835-y.
10. Ponomareva E.N., Sorokina M.N., Grigoriev V.A. [et al.], Probiotic Bacillus amyloliquefaciens B-1895, Improved Growth of Juvenile Trout. Food Science of Animal Resources, 2024, Vol. 44 (4), рр. 805–816, DOI: 10.5851/kosfa.2023.e75.
11. Miralimova Sh.M., Chistyakov V.A., Pepoyan A.Z., Informatsionnyi byulleten’ RTsNI, 2022, No. 2, pp. 59–66, URL: https://www.rfbr.ru/view_book/3360/ (дата обращения: 10.06.2024). (In Russ.)
12. Shcherbina M.A., Gamygin E.A., Kormlenie ryb v presnovodnoi akvakul’ture (Fish feeding in freshwater aquaculture), Moscow: VNIRO, 2006, 360 р.
13. Nikonorov S.I., Vitvitskaya L.V., Ekologo-geneticheskie problemy iskusstvennogo vosproizvodstva osetrovykh i lososevykh ryb (Ecological and genetic problems of artificial reproduction of sturgeon and salmon fish), Moscow: Nauka, 1993, 254 р.
14. Luk’yanenko V.I., Kasimov R.Yu., Kokoza A.A., Vozrastno-vesovoi standart zavodstkoi molodi kaspiiskikh oetrovykh: eksperimental’noe obosnovanie (Age and weight standard of the breeder juveniles of the Caspian Sea otters: experimental substantiation), Volgograd: IBVV AN SSSR, 1984, 229 р.
15. Metody issledovaniya v profpatalogii (Biokhimicheskie) (Research methods in occupational pathology (Biochemical), Moscow: Meditsina, 1988, 206 р.
16. Jang W.J., Lee J.M., Hasan M.T. [et al.], Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus), Fish. Shellfish Immunol., 2019, Vol. 92, рр. 719–727, DOI: 10.1016/j.fsi.2019.06.056.
17. Jahan N., Islam S.M.M., Rohani M.F., Hossain M.T., Shahjahan M., Probiotic yeast enhances growth performance of rohu (Labeo rohita) through upgrading hematology, and intestinal microbiota and morphology, Aquaculture, 2021, Vol. 545, Art. 737243, DOI: 10.1016/j.aquaculture.2021.737243.
18. Hasan M.T., Jang W.Je, Lee J.M. [et al.], Effects of immunostimulants, prebiotics, probiotics, symbiotics, and potentially immunoreactive feed additives on olive flounder (Paralichthys olivaceus): a review, Rev. Fish. Sci. Aquac., 2019, Vol. 27, рр. 417–437, DOI: 10.1080/23308249.2019.1622510.
19. Liu M., Song S., Hu C., Tang L. [et al.], Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutanesulfonate in zebrafish, Environ. Pollut., 2020, Vol. 265, Art. 114832, DOI: 10.1016/j.envpol.2020.114832.
20. Ismael N.E.M., Abd El-hameed S.A.A., Salama A.M., Naiel M.A.E., Abdel-Latif H.M.R., The effects of dietary clinoptilolite and chitosan nanoparticles on growth, body composition, haemato-biochemical parameters, immune responses, and antioxidative status of Nile tilapia exposed to imidacloprid, Environ. Sci. Pollut. Res., 2021, Vol. 28, рр. 29535–29550, DOI: 10.1007/s11356-021-12693-4.
21. Kewcharoen W., Srisapoome P., Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains), Fish. Shellfish Immunol., 2019, Vol. 94, рр. 175–189, DOI: 10.1016/j.fsi.2019.09.013.
22. Merrifield D.L., Dimitroglou A., Foey A. [et al.], The current status and future focus of probiotic and prebiotic applications for salmonids, Aquaculture, 2010, Vol. 302, рр. 1–18, DOI: 10.1016/j.aquaculture.2010.02.007.
23. Hossain M.K., Hossain M.M., Mim Z.T. [et al.], Multi-species probiotics improve growth, intestinal microbiota and morphology of Indian major carp mrigal Cirrhinus cirrhosus, Saudi J. Biol. Sci., 2022, Vol. 29, Art. 103399, DOI: 10.1016/j.sjbs.2022.103399.
24. Hossain M.K., Islam S.M.M., Rafiquzzaman S.M. [et al.], Multi-species probiotics enhance growth of Nile tilapia (Oreochromis niloticus) through upgrading gut, liver and muscle health, Aquac. Res., 2022, Vol. 53, р. 5710–5719, DOI: 10.1111/are.16052.
25. Rohani M.F., Islam S.M., Hossain M.K. [et al.], Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish, Fish. Shellfish Immunol., 2022, Vol. 120, рр. 569–589, DOI: 10.1016/j.fsi.2021.12.037.
26. Shukry M., Abd El-Kader M.F., Hendam B.M. [et al.], Dietary Aspergillus oryzae Modulates Serum Biochemical Indices, Immune Responses, Oxidative Stress, and Transcription of HSP70 and Cytokine Genes in Nile Tilapia Exposed to Salinity Stress, Animals., 2021, Vol. 11, рр. 1621, DOI: 10.3390/ani11061621.
27. Dawood M.A.O., Abo-Al-Ela H.G., Hasan M.T., Modulation of transcriptomic profile in aquatic animals: probiotics, prebiotics and symbiotics scenarios, Fish. Shellfish Immunol., 2020, Vol. 97, рр. 268–282, DOI: 10.1016/j.fsi.2019.12.054.
28. Jo J.Y., Jeon M.J., Bai S.C., Lee W.J., Growth, stress tolerance and non-specic immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system, Nippon Suisan Gakkaishi (Jpn. Ed. )., 2012, Vol. 78, рр. 660, DOI: 10.2331/suisan.78.660.
29. Varela J.L., Ruiz-Jarabo I., Vargas-Chacoff L. [et al.], Dietary administration of probiotic Pdp11 promotes growth and improves stress tolerance to high stocking density in gilthead seabream Sparus auratus, Aquaculture, 2010, Vol. 309, рр. 265–271, DOI: 10.1016/j.aquaculture.2010.09.029.
30. Islam S.M.M., Rohani M.F., Shahjahan M., Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine, Aquac. Rep., 2021, Vol. 21., Art. 100800, DOI: 10.1016/j.aqrep.2021.100800.
31. Sutthi N., Thaimuangphol W., Effects of yeast (Saccharomyces cerevisiae) on growth performances, body composition and blood chemistry of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) under different salinity conditions, Iran. J. Fish. Sci., 2020, Vol. 19, рр. 1428–1446, DOI: 10.22092/ijfs.2019.119254.
32. Hossain Md.K., Naziat A., Atikullah Md. [et al.], Probiotics relieve growth retardation and stress by upgrading immunity in Nile tilapia (Oreochromis niloticus) during high temperature events, Animal Feed Science and Technology, 2024, Vol. 316, рр. 116054, DOI: 10.1016/j.anifeedsci.2024.116054.
33. Pronina G.I., Artemenkov D.V., Petrushin A.B., Trudy VNIRO, 2017, Vol. 165, pp. 111–117. (In Russ.)
34. Shlenkina T.M., Romanova E.M., Romanov V.V., Shadyeva L.A., Vestnik Ul’yanovskoi gosudarstvennoi sel’skokhozyaistvennoi akademii, 2021, No. 4 (56), pp. 124–129, DOI: 10.18286/1816-4501-2021-4-124-129. (In Russ.)
35. Levina O.A., Stepanova I.P., Metallov G.F., Sorokina M.N., Tekhnologii pishchevoi i pererabatyvayushchei promyshlennosti APK – produkty zdorovogo pitaniya, 2015, No. 3 (7), pp. 17–25. (In Russ.)
36. Ivanov A.A., Golovina P.P., Romanova N.N., Korabel”nikova O.V., Izvestiya Timiryazevskoi sel’skokhozyaistvennoi akademii, 2008, No. 4, pp. 81–85. (In Russ.)
37. Pronina G.I., Koryagina N.Yu., Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Rybnoe khozyaistvo, 2015, No. 4, pp. 103–108. (In Russ.)
38. Sementina E.V., Serpunin G.G., Innovatsii v nauke i obrazovanii – 2010, (Innovations in Science and Education – 2010), Proceedings of the VIII International Scientific Conference dedicated to the 80th anniversary of the University. In 3 parts, Kaliningrad, October 19–21, 2010. Vol. 1, Kaliningrad, 2010, pp. 118–121. (In Russ.)
39. Miroshnikova E.P., Arinzhanov A.E., Kilyakova Yu.V., Miroshnikova M.S., Malenkina K.A., Miroshnikov I.S., Zhivotnovodstvo i kormoproizvodstvo, 2018, Vol. 101, No. 3, pp. 100–109. (In Russ.)
40. Ponomareva E.N., Geraskin P.P., Sorokina M.N., Grigor’ev V.A., Kovalyova A.V., Vestnik NGAU (Novosibirskii gosudarstvennyi agrarnyi universitet), 2023, No.1 (66), pp. 157–170. DOI: 10.31677/2072-6724-2023-66-1-157-170. (In Russ.)
Review
For citations:
Ponomareva E.N., Sorokina M.N., Grigoriev V.A., Mazanko M.S., CHistyakov V.A. Evaluation of the effect of probiotic preparations with antioxidant and enzymatic action based on the Bacillus subtilis strain on the growth and physiological state of fish. Bulletin of NSAU (Novosibirsk State Agrarian University). 2024;(4):250-264. (In Russ.) https://doi.org/10.31677/2072-6724-2024-73-4-250-264