Preview

Bulletin of NSAU (Novosibirsk State Agrarian University)

Advanced search

Influence of mutations in the FGF-5 gene on wool performance in sheep (review)

https://doi.org/10.31677/2072-6724-2023-68-3-225-235

Abstract

The effect of mutations in the FGF-5 gene on the wool productivity of sheep is considered. The conservation and rational use of the sheep gene pool is a very pressing problem for the development of sheep breeding in modern conditions. Thanks to the widespread use of methods for searching for genome-wide associations, the list of candidate genes for sheep productivity indicators is annually replenished. After identifying a new candidate gene, further work is aimed at a detailed study of its polymorphism and the search for mutations associated with gene expression and economically beneficial animal traits. A promising candidate for the quality indicators of sheep's wool is the hair growth regulator gene FGF-5 (fibroblast growth factor 5). FGF-5 plays a vital role in regulating the hair growth cycle during the development of mammalian hair follicles and skeletal muscle development. Haiyu Zhao et al. conducted a study of FGF-5 gene variation in the SG and SGG sheep populations, according to which ten putative SNPs were identified in the FGF-5 gene, and only five of them could be genotyped (SNPs 1-5). These SNPs are intronic mutations located in the first intron of the ovine FGF-5 gene. It was found that the frequencies of homozygous wild alleles at SNP1, SNP2, SNP3 and SNP5 were higher than those of the mutant alleles, except at the SNP4 locus. This study suggests that the presence of polymorphisms in the FGF-5 gene may affect hair growth in sheep and that hair growth may be enhanced by altering the expression of the FGF5 gene.

About the Authors

E. A. Klimanova
Novosibirsk State Agrarian University
Russian Federation

PhD student

Novosibirsk



D. A. Aleksandrova
Novosibirsk State Agrarian University
Russian Federation

PhD student

Novosibirsk



O. I. Sebezhko
Novosibirsk State Agrarian University
Russian Federation

PhD in Biological Sciences, Associate Professor

Novosibirsk



S. G. Kulikova
Novosibirsk State Agrarian University
Russian Federation

Doctor of Biological Sciences

Novosibirsk



V. V. Garth
Novosibirsk State Agrarian University
Russian Federation

Doctor of Agricultural Sciences

Novosibirsk



References

1. Panov B.L., Petukhov V.L., Ernst L.K., Gudilin I.I., Kulikova S.G., Korotkevich O.S., Dementiev V.N., Kochnev N.N., Marenkov V.G., Kochneva M.L., Nezavitin A.G., Smirnov P.N., Kondratov A.F., Zheltikov A.I., Bekenev V.A., Nozdrin G.A.б Problemy selekcii sel'skohozyajstvennyh zhivotnyh (Problems of breeding farm animals), Novosibirsk, 1997.

2. Ernst L.K., Zheltikov A.I., Korotkevich O.S., Kamaldinov E.V., Fridcher A.A., Ledeneva O.Yu., Zigachev A.I., Petukhova T.V., Aldushinov D.S., Klimenok I.I., Patent na izobretenie RU 2414124 C2, Zayavl. 15.06.2009; opubl. 20.03.2011. (In Russ.)

3. Petukhov V.L., Ernst L.K., Zheltikov A.I., Marenkov V.G., Gart V.V., Kamaldinov E.V., Korotkevich O.S., Chysyma R.B., Zheltikov O.A., Petukhov V.L., Gart E.V., Patent na izobretenie RU 2270562 C2, Zayavl. 05.05.2004; opubl. 27.02.2006. (In Russ.)

4. Andreeva V.A., Venrong Li, Mingzhun L., Saurbaeva R.T., Konovalova T.V., Klimanova E.A., Sebezhko O.I., Nazarenko A.V., Vestnik NGAU, 2019, No. 4 (53), pp. 23–31. (In Russ.)

5. Kushnir A.V., Glazko V.I., Petukhov V.A., Dimov G., Storozhok S.I., Biologiya, genetika i selekciya ovcy (Biology, genetics and sheep breeding), Novosibirsk: NGAU, 2010, 524 p. (In Russ.)

6. Konovalova T.V., Andreeva V.A., Saurbaeva R.T., Korotkevich O.S., Kostomakhin N.M., Klimanova E.A., The impact of the stud rams of romanov breed genotype on the accumulation of cadmium in the myocardium of their offspring, Trace Elements and Electrolytes, 2021, No. 3, pp. 145.

7. Storozhuk S.I., Petukhov V.L., Andreeva V.A., Klimanova E.A., Konovalova T.V., Tarasenko E.I., Vestnik NGAU, 2021, No. 2 (59), pp. 156–166. (In Russ.)

8. Klimanova E.A., Teoriya i praktika sovremennoj agrarnoj nauki (Theory and practice of modern agricultural science), Proceedings of the Conference Title, 2020, pp. 249–251. (In Russ.)

9. Klimanova E.A., Rol' agrarnoj nauki v ustojchivom razvitii sel'skih territorij (The role of agricultural science in the sustainable development of rural areas), Proceedings of the Conference Title, 2019, pp. 81–84. (In Russ.)

10. Zhao H., Wu X., Cai H., Pan C., Lei C., Chen H., Lan X., Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2 (PITX2) gene in dairy goats, Gene, 2013, No. 532, pp. 203–210, DOI: 10.1016/j.gene.2013.09.062.

11. Pomitun I.A., Boyko E.A., Shulika L.V., Korc I.V., Culibaba R.O., Pomitun L.I., Nauchno-tekhnicheskij byulleten' Instituta zhivotnovodstva Nacional'noj akademii agrarnyh nauk Ukrainy, 2017, No. 118, pp. 148–153. (In Russ.)

12. Mortimer S.I., Hatcher S., Fogarty N.M., Werf J.H.J., Brown D.J., Swan A.A., Greeff J.C., Refshauge G., Hocking J.E.E., Gaunt G.M., Genetic parameters for wool traits, live weight, and ultrasound carcass traits in Merino sheep, J. Anim. Sci., 2017, No. 95, pp. 1879–1891, DOI: 10.2527/jas.2016.1234.

13. Pochemu ovech'ya sherst' polezna dlya zdorov'ya (Why sheep wool is good for health): https://vyazan.webflow.io (data obrashcheniya: 19.06.2022). (In Russ.)

14. Abied A., Bagadi A., Bordbar F., Pu Yabin, Augustino S.M.A., Xue X., Xing F., Gebreselassie G., Mwacharo J.L.H.J.M., Ma Y., Zhao Q., Genomic Diversity, Population Structure, and Signature of Selection in Five Chinese Native Sheep Breeds Adapted to Extreme Environments Genes, 2020, No. 11(5), pp. 494, DOI: 10.3390/genes11050494.

15. Vignal A., Milan D., SanCristobal M., Eggen A., A review on SNP and other types of molecular markers and their use in animal genetics, Genet. Sel. Evol., 2002, No. 34, pp. 275–305, DOI: 10.1186/1297-9686-34-3-275.

16. Vypadenie volos (Hair loss): https://www.invitro.ru/library/simptomy/28683/ (data obrashcheniya: 19.06.2022) (In Russ.)

17. Drögemüller C., Rüfenacht S., Wichert B., Leeb T., Mutations within the FGF5 gene are associated with hair length in cats, Anim. Genet, 2007, No. 38, pp. 218–221, DOI: 10.1111/j.13652052.2007.01590.x.

18. Gebreselassie G., Berihulay H., Jiang L., Ma Yu., Review on genomic regions and candidate genes associated with economically important production and reproduction traits in sheep (Ovies aries), Animals, 2020, No.10, pp. 1–12, DOI: 10.3390/ani10010033.

19. Li W.R., Liu C.X., Zhang X.M., Chen L., Peng X.R., He S.G., Lin J.P., Han B., Wang L.Q., Huang J.C., Liu M.J., CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep FEBS J, 2017, No. 284, pp. 2764–2773, DOI: 10.1111/febs.14144.

20. Кharitonenkov A., FGFs and metabolism, Current Opinion in Pharmacology, 2009, Vol. 9, No. 6, pp. 805–810.

21. Long Y.C., Kharitonenkov A., Hormone-like fibroblast growth factors and metabolic regulation, Biochimica et Biophysica Acta, 2011, Vol. 1812, No. 7, pp. 791–795, DOI:10.1016/j.bbadis.2011.04.002.

22. Presta M., Dell’Era P., Mitola S., Moroni E., Ronca R., Rusnati M., Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis, Cytokine Growth Factor Rev, 2005, Vol. 16, No. 2, pp. 159–178, DOI:10.1016/j.cytogfr.2005.01.004.

23. Kim Y.J., Jung N., Kim N., Ha J.C., Park J.H., Han K., Chang M., Lee J., Kim C.-H., Effect of cysteine-free human fibroblast growth factor-5s mutant (FGF5sC93S) on hair growth, Dermatol. Ther, 2020, No. 33, pp.14530, DOI: 10.1111/dth.14530.

24. Itoh N., Ornitz D.M., Evolution of the Fgf and Fgfr gene families, Trends in Genetics, 2004, No. 20(11), pp. 563–569, DOI:10.1016/j.tig.2004.08.007.

25. FGF5 fibroblast growth factor 5 Ovis aries, National Library of Medicine (sheep): https://www.ncbi.nlm.nih.gov/gene/?term=FGF-5+sheep (data obrashhenija: 19.06.2022).

26. Fon Tacer K., Bookout A.L., Ding X., Kurosu H., John G.B., Wang L., Goetz R., Mohammadi M., Kuro-o M., Mangelsdorf D.J., Kliewer S.A., Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse, Molecular Endocrinology, 2010, Vol. 24, No. 10, pp. 2050–2064, DOI: 10.1210/me.2010-0142.

27. Higgins C.A., Petukhova L., Harel S., Ho Y.Y., Drill E., Shapiro L., Wajid M., Christiano A.M., FGF5 is a crucial regulator of hair length in humans, Proc. Natl. Acad. Sci. U.S.A., 2014, No. 111, pp. 10648–10653, DOI: 10.1073/pnas.1402862111.

28. Hu R., Fan Z.Y., Wang B.Y., Deng S.L., Zhang X.S., Zhang J.L., Han H.B., Lian Z.X., Rapid communication: Generation of FGF5 knockout sheep via the CRISPR/Cas9 system, Journal of Animal Science, 2017, No. 95, pp. 2019–2024, https://doi.org/10.2527/jas.2017.1503.

29. Su R., Gong G., Zhang L., Yan X., Wang F., Zhang L., Qiao X., Li X., Li J., Screening the key genes of hair follicle growth cycle in Inner Mongolian Cashmere goat based on RNA sequencing, Arch. Anim. Breed, 2020, No. 63, pp. 155–164, DOI: 10.5194/aab-63-155- 2020.

30. Hattori Y., Yamasaki M., Itoh N., The rat FGF-5 mRNA variant generated by alternative splicing encodes a novel truncated form of FGF-5, Biochim. Biophys. Acta, 1996, No. 1306, pp. 31–33, DOI: 10.1016/0167-4781(19)60001-1.

31. Skoryh L.N., Safonova N.S., Kovalev D.A., Efimova N.I., Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vysshee professional'noe obrazovanie, 2021, No. 4 (64), pp. 161–170. (In Russ.)

32. Korotkevich O.S., Lyukhanov M.P., Petukhov V.L., Yudin N.S., Single nucleotide polymorphism in dairy cattle populations of West Siberia Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Vancouver, Canada, August 17-22. Publishing office: Promega, 2014, p. 487.

33. Kamaldinov E.V., Korotkevich O.S., Petukhov V.L., Zheltikov A.I., Fridcher A.A., Doklady rossijskoj akademii sel'skohozyajstvennyh nauk, 2010, No. 4, pp. 49–51. (In Russ.)

34. Klimanova E.A., Popovskij Z.T., Konovalova T.V., Tarasenko E.I., Korotkevich O.S., Sebezhko O.I., Vestnik NGAU, 2021, No. 4 (61), pp. 126–136. (In Russ.)

35. Klimanova E.A., Konovalova T.V., Andreeva V.A., Korotkevich O.S., Petukhov V.L., Nazarenko J.S., Vestnik NGAU, 2020, No. 4 (57), pp. 82–87. (In Russ.)

36. Porchu K., Dzabirski V., Popovski Z., DNA microsatellite informativeness, allele frequencies and their distribution in the genome of Macedonian autochthonous sheep populations, Journal of Agricultural, Food, and Environmental Sciences, 2020, No. 74, pp. 1–10.

37. Rustempasic A., Dokso A., Zecevic E., Hodzic A., Polymorphism of β-lactoglobulin in pramenka sheep breed in Bosnia and Herzegovina, Journal of Animal and Plant Sciences, 2018, No. 28 (1), pp. 337–340.

38. Syso A.I., Lebedeva M.A., Cherevko A.S., Petukhov V.L., Sebezhko O.I., Konovalova T.V., Korotkevich O.S., Narozhnykh K.N., Kamaldinov E.V., Sokolov V.A., Ecological and biochemical evaluation of elements contents in soils and fodder grasses of the agriculturallands of Siberia, J. Pharm. Sci. and Res, 2017, No. 9 (4), pp. 368–374.

39. Sebezhko O.I., Petukhov V.L, Chysyma R.B., Kuzmina E.E., Influence of anthropogenic pollution on interior parameters, accumulation of heavy metals in organs and tissues, and the resistance to disorders in the yak population in the republic of Tyva, Journal of Pharmaceutical Sciences and Research, 2017, No. 9, pp. 1530–1535.


Review

For citations:


Klimanova E.A., Aleksandrova D.A., Sebezhko O.I., Kulikova S.G., Garth V.V. Influence of mutations in the FGF-5 gene on wool performance in sheep (review). Bulletin of NSAU (Novosibirsk State Agrarian University). 2023;(3):225-235. (In Russ.) https://doi.org/10.31677/2072-6724-2023-68-3-225-235

Views: 219


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6724 (Print)