Dill seed germ development after short-term temperature stress.
https://doi.org/10.31677/2072-6724-2021-59-2-7-17
Abstract
NNew data on germ growth processes of dill seeds formed at the first and second branching orders after exposure to short-term heat stress (40 °C) are presented. Morphometric method and analysis of dill seed embryo growth in dynamics were used. The studies were carried out in 20152017 at the All-Russian Research Institute of Vegetable Growing, a branch of FSBSI FSCVG. Seeds of dill (Anethum graveolens L.) of the variety Centaurus from the first and second branching orders were the object of research. First, seeds were germinated in a thermostat. Then, swollen roots were exposed to a temperature of 40 °C according to the experiment scheme: 0 (control); 1; 2; 3; 4 and 5 days. After incubation, the seeds were transferred to standard conditions (temperature 20 °C) and germinated in Petri dishes on filter paper without light for 21 days. Germ size was measured using image analysis software. Critical embryo length and degree of underdevelopment were determined, and the ratio of embryo length to endosperm length (I Z/E) was calculated. Logistic regression with four parameters: b, c, d, e., was used to construct a germ growth curve. The relationship between the parameters was assessed using Pearson correlation analysis. The differences were considered statistically significant at P≤0.05. The duration of temperature action, which has an inhibitory effect on embryo growth, germination rate, the number of germinated seeds, were revealed. It was found that the embryos of seeds obtained from different branching orders have different sizes and have different intensity of growth under stress and standard conditions. It was shown that the effect of brief temperature (40 °C) on embryo growth depends on branching order and that embryos of seeds of the second branching order are more sensitive to high temperature. Morphometric parameters of the source were shown to play a critical role in the ability of dill seeds to resist the effect of temperature stressor during germination.
About the Authors
A. F. BukharovRussian Federation
Doctor of Agricultural Sciences, Chief Scientific Officer
Vereya village, Ramensky district, Moscow region
D. N. Baleev
Russian Federation
PhD in Agricultural Sciences, Leading Researcher
Vereya village, Ramensky district, Moscow region; Moscow
N. A. Eremina
Russian Federation
Junior Researcher
Vereya village, Ramensky district, Moscow region
References
1. Maraghni M., Gorai M., Neffati M., Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus, South African Journal of Botany, 2010, vol. 76, pp. 453–459. doi.org/10.1016/j.sajb.2010.02.092.
2. Wen B., Effects of high temperature and water stress on seed germination of the invasive species Mexican sunflower, PLoS One, 2015, vol. 10, e0141567, doi.org/10.1371/journal.pone.0141567.
3. Chitwood J., ShiA., Evans M. [et al], Effect oftemperatureonseedgerminationinspinach(Spinacia oleracea), Hort Science, 2016, vol. 51, рр. 1475–1478, doi.org/10.21273/hortsci11414–16.
4. Nascimento W.M., Huber D.J., Cantliffe D.J., Carrot seed germination and respiration at high temperature in response to seed maturity and priming, Seed Science and Technology, 2013, vol. 41, рр. 164–169, doi.org/10.15258/sst.2013.41.1.19.
5. Wang W., Vinocur B., Shoseyov O. [et al], Role of plant heat-shock proteins and molecular shaperones in the abiotic stress response, Trends in Plant Science, 2004, vol. 9, рр. 244–252, doi.org/10.1016/j.tplants.2004.03.006.
6. Tariq M., Waseem S., Bilal H.A., An overview on the small heat shock proteins, African Journal of Biotechnology, 2010, vol. 9, рр. 927–949, doi.org/10.5897/ajb09.006.
7. Baleev D.N., Bukharov A.F., Ovoshchi Rossii, 2012, No. 3 (16), рр. 38–46. (In Russ.)
8. Baleev D.N., Bukharov A.F., Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2013, No. 11 (109), рр. 22–25. (In Russ.)
9. Baleev D.N., Bukharov A.F., Bukharova A.R., Vestnik Bashkirskogo gosudarstvennogo agrarnogo universiteta, 2012, No. 2, рр. 5–7. (In Russ.)
10. Gray D., Steckel J.R.A., Parsnip (Pastinaca sativa) seed production: effects of seed crop plant density, seed position on the mother plant, harvest date and method, and seed grading on embryo and seed size and seedling performance, Annals of Applied Biology, 1985, vol. 107, рр. 559–570, doi.org/10.1111/j.17441748.1985.tb03172.x.
11. Bianco V.V., Damato G, Defilippis R., Umbel position on the mother plant: «seed» yield and quality of seven cultivars of Florence fennel, Acta Horticulturae, 1994, vol. 362, рр. 51–58, doi.org/10.17660/actahortic.1994.362.5.
12. SzafiroskaA.I., The correlation between mother plant architecture, seed quality and field emergence of carrot, Acta Horticulturae, 1994, vol. 354, рр. 93–98, doi.org/10.17660/actahortic.1994.354.10.
13. Corbineau F., Picard M.A., Bonnet A. [et al], Effects of production factors on germination responses of carrot seeds to temperature and oxygen, Seed Science Research, 1995, vol. 5, рр. 129–135, doi.org/10.1017/s0960258500002749.
14. Panayotov N., Heterogeneity of carrot seeds depending on their position on the mother plant, Folia Horticulturae, 2010, vol. 22, рр. 25–30, doi.org/10.2478/fhort-2013–0147.
15. Vandelook F., Bolle N., Van Assche J.A., Morphological and physiological dormancy in seeds of Aegopodium podagraria (Apiaceae) broken successively during cold stratification, Seed Science Research, 2009, vol. 19, рр. 115–123, doi.org/10.1017/s0960258509301075.
16. Scholten M., Donahue J., Shaw N.L. [et al], Environmental regulation of dormancy loss in seeds of Lomatium dissectum (Apiaceae), Annals of Botany, 2009, vol. 103, рр. 1091–1101, doi.org/10.1093/aob/mcp038.
17. Holubowicz R. Morozowska M., Effect of umbel position on dill (Anethum graveolens L.) plants growing in field stands on selected seed stalk features, Folia Horticulturae, 2011, vol. 23, рр. 157–163, doi.org/10.2478/v10245-011-0024-3.
18. Bukharov A.F., Baleev D.N., Ivanova M.I., Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2014, No. 7 (117), рр. 26–32. (In Russ.)
19. Bukharov A.F., Baleev D.N., Bukharova A.R., Kinetika prorastaniya semyan. Sistema metodov i parametrov (Kinetics of seed germination. System of methods and parameters). Moskow: RGAZU, 2016, 64 р.
20. Martin A.C., The comparative internal morphology of seeds, American Midland Naturalist, 1946, vol. 36, pp. 513–660, doi.org/10.2307/2421457.
21. Stokes P.A, Рhysiological study of embryo development in Heracleum sphondylium L. I. The effect of temperature on embryo development, Annals of Botany, 1952, vol. 16, pp. 441–447, doi.org/10.1093/oxfordjournals.aob.a083326.
22. Necajeva J., Ievinsh G., Seed dormancy and germination of an endangered coastal plant Eryngium maritimum (Apiaceae), Estonian Journal of Ecology, 2013, vol. 62, рр. 150–161, doi.org/10.3176/eco.2013.2.06.
23. Grushvitskii I.V., Komarovskie chteniya. XIV, Moskow, Leningrad: Izdatel’stvo AN SSSR, 1961 – 46 р. (In Russ.)
24. Hawkins T.S., Baskin C.C., Baskin J.M., Morphophysiological dormancy in seeds of three eastern North American sanicula species (Apiaceae subf. Saniculoideae): evolutionary implications for dormancy break, Plant Species Biology, 2010, vol. 25, рр. 103–113, doi.org/10.1111/j.1442–1984.2010.00273.x.
25. Baleev D.N., Bukharov A.F., Ovoshchi Rossi, 2012, No. 1 (14), рр. 54 – 59. (In Russ.)
26. Pereira R.S., Nascimento W.M., Vieira J.V., Carrot seed germination and vigor in response to temperature and umbel orders, Scientia Agricola, 2008, vol. 65, рр. 145–150, doi.org/10.1590/s0103-90162008000200006.
27. Morimoto R.I., Kline M.P., Bimston D.N. [еt al], The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones, Essays Biochem, 1997, vol. 32, pp. 17–29, ncbi.nlm.nih.gov/pubmed/9493008.
28. Bukharov A.F., Baleev D.N., Ovoshchi Rossii, 2013, No. 2 (19), рр. 36–41. (In Russ.)
29. Baleev D.N., Bukharov A.F., Allelopatiya ovoshchnykh zontichnykh (Umberliferae): tormozhenie prorastaniya i induktsiya sostoyaniya pokoya semyan (Allelopathy of vegetable umbrellas (UmberlifeRee): germination braking and induction of seed rest), Saarbrucken, Germany, 2012.
30. Bukharov A.F., Baleev D.N., Allelopaticheskaya aktivnost’ u semyan ovoshchnykh sel’dereinykh kul’tur, Sel’skokhozyaistvennaya biologiya, 2014, T. 49, № 1, рр. 86–90. (In Russ.)
31. Batygina T.B., Embriologiya tsvetkovykh rastenii. Terminologiya i kontseptsii, SPb.: Mir i sem’ya, 1994, T.1, рр. 263 – 266. (In Russ.)
Review
For citations:
Bukharov A.F., Baleev D.N., Eremina N.A. Dill seed germ development after short-term temperature stress. Bulletin of NSAU (Novosibirsk State Agrarian University). 2021;(2):7-17. (In Russ.) https://doi.org/10.31677/2072-6724-2021-59-2-7-17