Preview

Bulletin of NSAU (Novosibirsk State Agrarian University)

Advanced search

SALMONELLA INFECTION LEVEL IN CHICKEN POPULATIONS VERSUS ANTAGONISTIC ACTIVITY OF LACTOBACILLACEAE AND ENTEROCOCCACEAE AGAINST SALMONELLA ENTERICA

https://doi.org/10.31677/2072-6724-2020-54-1-48-55

Abstract

The antagonistic activity of lactobacilli in the intestine in relation to various enteropathogenic microorganisms can vary within wide limits, including depending on the species composition of the lactobiota of the intestine. The purpose of this work was to determine the antagonistic activity of representatives of the order Lactobacillales isolated from chickens in poultry farms with different levels of Salmonella infection. The test object was the chickens of the parent herd and broiler chickens of crosses Ross 308 and Hubbard F - 15 from five poultry farms. Three poultry farms were characterized by a low level of salmonella infection in birds (less than 5% for cloacal swabs in PCR and the absence of salmonella isolation from food products). Two poultry farms were characterized by a high level of Salmonella infection (poultry infection by cloacal swabs of more than 10% and official salmonellosis disadvantage due to isolation of Salmonella cultures in food products). The level of infection was evaluated by real-time PCR after preliminary subculture of cloacal swabs on Shadler’s broth. The antagonistic activity of lactobacilli and related bacterial species isolated from the same chickens was carried out in co-cultivation tests on the Shadler broth with subsequent identification of salmonella on the RVS broth. Poultry farms with low Salmonella infection were characterized by the presence of L. reuteri as a major component of intestinal lactobiota and had a higher antagonistic activity against more Salmonella cultures (odds ratio (OR) 17.33 (CI 95 = 5.99-50.07776))

About the Authors

V. N. Afonyushkin
Siberian Federal Scientific Center for Agrobiotechnology RAS Novosibirsk; Institute of Chemical Biology and Fundamental Medicine SB RAS
Russian Federation
Candidate of Biological Sciences


N. V. Davydova
Siberian Federal Scientific Center for Agrobiotechnology RAS Novosibirsk
Russian Federation
Candidate of Veterinary Sciences


I. N. Tromenschleger
Institute of Chemical Biology and Fundamental Medicine SB RAS
Russian Federation
Engineer


O. V. Mishukova
Institute of Chemical Biology and Fundamental Medicine SB RAS
Russian Federation
Junior Researcher


Y. N. Kozlova
Institute of Chemical Biology and Fundamental Medicine SB RAS
Russian Federation
Candidate of Biological Sciences


V. S. Cherepushkina
Siberian Federal Scientific Center for Agrobiotechnology RAS Novosibirsk
Russian Federation
Junior Researcher


T. E. Mironova
Institute of Chemical Biology and Fundamental Medicine SB RAS; Novosibirsk State Agrarian University
Russian Federation
Research Assistant


I. Y. Klemeshova
Novosibirsk State Agrarian University
Russian Federation
Candidate of Agricultural Sciences


References

1. Pavlova N. V., Kirzhaev F. S., Lapinskajte R. BIO, 2002, No 1, pp. 4–8. (In Russ.)

2. Laptev G.YU., Il’ina L.A, Nagornova K. V., Nikonov I. N., Novikova N. I. High-throughput sequencing in genomics, Proceeding of Intern. Conference, Novosibirsk. July 21–25, 2013, 43 p. (In Russ.)

3. Gorskaya E. M., Liz’ko N.N., Lencner A. A., Bondarenko V. M., Sokolova K. Ya., Lihacheva A. Yu. Zhurn. mikrobiol., epidemiol. i immunol, 1992, No 3, pp. 17–20. (In Russ.)

4. Afonyushkin V. N., Tromenshleger I. N., Filipenko M. L., Hrapov E. A., Dudareva E. V. Byulleten» eksperimental’noj biologii i mediciny, 2016, No 6, pp. 757–760. (In Russ.)

5. Casas I.A, Dobrogosz W. J. Lactobacillus reuteri, Microecol. Therap., 1997, Vol 25, pp. 221–31.

6. Afonyushkin V. N., Filipenko M. L., Shrshova A. N., Maslov O. G. Sibirskij vestnik sel’skohozyajstvennoj nauki, 2013, No 4, pp. 70–75. (In Russ.)

7. Afonyushkin V. N., Spodyreva T. V., Yushkov Yu.G., Koptev V. Yu. Molecular biological methods for the control of salmonella, Novosibirsk, 2011, 63 p.

8. Talarico T. L., Casas I. A., Chung T. C., Dobrogosz, W. J. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri, Antimicrob. Agents Chemother, 1988, No 12 (32), pp. 1854–1858.

9. Zhang, D., Li, R., and Li, J. Lactobacillus reuteri ATCC 55730 and L22 display probiotic potential in vitro and protect against Salmonella-induced pullorum disease in a chick model of infection, Res. Vet. Sci., 2012, No 1 (93), pp. 366–73.

10. Morita, H., Toh H., Fukuda S., Horikawa H., Oshima K., Suzuki T., Murakami M., Hisamatsu S., Kato Y., Takizawa T., Fukuoka H., Yoshimura T., Itoh K., O’Sullivan D.J., McKay L.L., Ohno H., Kikuchi J., Masaoka T., Hattori M. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production, DNA Res., 2008, No 3 (15), pp. 151–161.

11. Schaefer L., Auchtung T. A., Hermans K. E., Whitehead D., Borhan B., Britton R. A. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups, Microbiology, 2010, No Pt 6 (156), pp. 1589–99.

12. Avila M., Gomez-Torres N., Hernandez M., Garde, S. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species, Int. J. Food Microbiol, 2014, Vol 172, pp. 70–75.

13. Sulemankhil I., Parent M., Jones M. L., Feng Z., Labbe A., Prakash S. In vitro and in vivo characterization and strain safety of Lactobacillus reuteri NCIMB 30253 for probiotic applications, Can. J. Microbiol, 2012, No 6 (58), pp. 776–87.

14. Axelsson T., Chung T., Dobrogosz T., Lindgren S. Production of a Broad Spectrum Antimicrobial Substance by Lactobacillus reuteri, Microb. Ecol. Health Dis., 1989, No 2 (2), pp. 131–136.

15. Ghareeb K., Awad W. A., Mohnl M. Evaluating the efficacy of an avian-specific probiotic to reduce the colonization of Campylobacter jejuni in broiler chickens, Poult. Sci., 2012, No 8 (91), pp. 1825–1832.

16. Afonyushkin V. N., Dudareva E. V., Malaheeva L.I, Frolova O. V., Shkred O. V., Filipenko M. L., Sovremennye metody kontrolya sal’monellyoza, Pticevodstvo, 2008, No 9, pp. 43–44. (In Russ.)

17. Wirtz S., Neufert C., Weigmann B., Neurath M. F., Chemically induced mouse models of intestinal inflammation, Nat. Protoc., 2007, Vol 2, pp. 541–546.


Review

For citations:


Afonyushkin V.N., Davydova N.V., Tromenschleger I.N., Mishukova O.V., Kozlova Y.N., Cherepushkina V.S., Mironova T.E., Klemeshova I.Y. SALMONELLA INFECTION LEVEL IN CHICKEN POPULATIONS VERSUS ANTAGONISTIC ACTIVITY OF LACTOBACILLACEAE AND ENTEROCOCCACEAE AGAINST SALMONELLA ENTERICA. Bulletin of NSAU (Novosibirsk State Agrarian University). 2020;(1):48-55. (In Russ.) https://doi.org/10.31677/2072-6724-2020-54-1-48-55

Views: 373


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-6724 (Print)