АГРОНОМИЯ, ЛЕСНОЕ ХОЗЯЙСТВО

УДК 635.656:631.563

ИЗМЕНЕНИЕ БИОХИМИЧЕСКОГО СОСТАВА ЗЕРНА СОИ *GLYCINE MAX* И *GLYCINE SOJA* ПРИ ДЛИТЕЛЬНОМ ХРАНЕНИИ В РАЗНЫХ УСЛОВИЯХ

Г.С. Выскварка, старший преподаватель Е.А. Семенова, кандидат биологических наук О.А. Селихова, кандидат сельскохозяйственных наук П.В. Тихончук, доктор сельскохозяйственных наук, профессор

Ключевые слова: соя, зерно, хранение, белок, масло, аминокислоты, жирные кислоты

Дальневосточный государственный аграрный университет E-mail: olgacoa@bk.ru

Реферат. Представлены результаты исследований по влиянию условий и продолжительности хранения на биохимический состав зерна культурной и дикорастущей сои (2007–2012 гг). Для выявления изменения содержания общего белка, масла и их качественного состава в течение 5 лет в зерне сои сортов Соната, Гармония, Лидия, Даурия и дикой формы КА-1344 его хранили в условиях лаборатории (температура воздуха 18-22°C, влажность воздуха 60-70%) и в типовом складе (максимальная температура воздуха в летний период +35°C, минимальная в зимний период -33°C). Полученные данные сравнивали с исходными (перед закладкой на хранение). Выявлено, что за 5 лет хранения в зерне сои снижается количество общего белка и масла в среднем у всех исследованных объектов. В условиях лаборатории снижение содержания белка составило 2,4, масла -0.9%, в типовом складе 2,9 и 0.1% соответственно, за исключением сорта сои Гармония, у которого выявлено увеличение содержания масла в зерне на 1-1,7%, и дикорастущей сои в условиях типового склада – на 2,3 %. Содержание незаменимых аминокислот в процессе хранения, как в условиях типового склада, так и в условиях лаборатории, снижается: аланина – на 21–22, лизина — на 17, аргинина — на 15, лейцина — на 10 и изолейцина — на 18–19 %, а содержание фенилаланина и валина, наоборот, увеличивается у всех изучаемых сортов сои на 33 и 17-18% соответственно. Отмечено, что в процессе хранения независимо от его способа в зерне сои доля олеиновой кислоты в масле значительно снижается, а доля линолевой, напротив, увеличивается по всем сортам. Зерно сои, хранившееся в условиях типового склада, характеризуется повышенным относительным содержанием полиненасыщенных жирных кислот (линолевой и линоленовой). Следовательно, условия лаборатории, при которых температура и влажность воздуха варьируют незначительно, являются более благоприятными для хранения зерна в целях использования его в перерабатывающей промышленности.

Соя — одна из важнейших технических культур с богатым химическим составом. Она занимает первое место в структуре посевных площадей Дальневосточного региона. За время возделывания данной культуры изучен большой круг вопросов, связанных с биологией, селекцией и технологией возделывания. Однако в настоящее время

большой интерес представляет изучение изменения биохимического состава зерна сои при длительном хранении в разных условиях, так как долговечность семян имеет большое теоретическое и практическое значение, что связано с вопросами сохранения коллекционного материала и создания продовольственного и семенного фондов.

П.П. Вавилов и Г.С. Посыпанов [1] считают, что содержание белка в семенах зависит от ряда факторов: генотипа сорта, почвенно-климатических условий зоны, обеспеченности растений элементами питания, а также от условий и продолжительности хранения [2].

При хранении происходит снижение содержания белка, растворимости белковых веществ, особенно альбуминов, изменяется соотношение в белке различных фракций [3]. Известно, что повышение температуры сокращает срок хранения семян, а снижение — увеличивает [4]. Считают, что одной из причин гибели семян являются необратимые изменения белков в результате их денатурации, усугубляемой неблагоприятными условиями хранения [5].

Связи с вышесказанным, нами была поставлена цель изучить влияние условий и продолжительности хранения на биохимический состав зерна культурной и дикорастущей сои.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Объектами исследования служило зерно культурной сои (*Glycine max*) сортов Соната, Лидия, Даурия, Гармония и дикорастущей сои (*G. soja*) формы KA-1344.

Зерно хранили в течение пяти лет (2007—2012 гг.) в условиях типового склада (максимальная температура воздуха в летний период составляла +35 °C, минимальная в зимний период –33 °C) и лаборатории (температура воздуха 18–22 °C, влажность воздуха 60–70 %).

Содержание белка и масла в зерне определяли на ИК-сканере Nir-5000 в лаборатории ГНУ Всероссийский НИИ сои. Статистическую оценку полученных данных проводили с применением программы Microsoft Office, Excel, 2007 по формулам, представленным Б.А Доспеховым [6].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

В результате исследований выявлено, что в процессе хранения количество белка снижается у всех исследованных сортов в обоих вариантах (рис. 1). Большие затраты на «самосохранение» выявлены у сортов Соната и Гармония. В условиях лаборатории у сорта сои Соната за 5 лет хранения снижение составило 4%, Гармония – 5, у остальных сортов – 0,2–1,6%. В условиях типового склада снижение данного показателя у этих же сортов составило 3,7; 5 и 0,04–0,9% соответ-

ственно. Снижение же содержания белка у дикой формы сои (КА-1344) больше в условиях склада, чем в условиях лаборатории. В связи с тем, что в складе зерно сои находится в изменяющихся внешних условиях среды (переменчивая температура и влажность), оно периодически переходит в состояние анабиоза, тем самым обеспечивая себе меньшие затраты на поддержание метаболизма в клетке и обеспечивая самосохранение.

Вероятно, это связано с тем, что зерно, вынужденное оставаться в состоянии покоя длительное время в разных условиях, должно обеспечивать свою жизнеспособность с помощью процессов дыхания, происходящих в клетках, регуляция которых осуществляется на разных уровнях. Прежде всего, это субстратный контроль дыхания: доступность, количество и состав субстратов.

Биологическая ценность белка определяется сбалансированностью в нем незаменимых аминокислот: лизина, метионина, триптофана, треонина, валина, фенилаланина, лейцина, изолейцина, которые жизненно необходимы для организма, однако могут быть синтезированы только растением.

При хранении зерна сои происходит снижение не только содержания общего белка, но и подвергается изменению его качественный состав. Нами выявлено снижение содержания следующих незаменимых аминокислот в процессе хранения как в условиях типового склада, так и в условиях лаборатории: аланина — на 21—22, лизина — на 17, аргинина — на 15, лейцина — на 10 и изолейцина — на 18—19% (табл. 1). Содержание фенилаланина и валина, наоборот, увеличивается у всех изучаемых сортов сои независимо от условий хранения на 33 и 17—18% соответственно.

Следует отметить, что изменение качественного состава белка в процессе хранения у дикорастущей формы по содержанию валина и аргинина отличается от культурной сои: у всех изучаемых сортов культурной сои содержание валина увеличивалось, аргинина — уменьшалось, тогда как у дикой формы, наоборот, отмечено снижение количества валина, а увеличение — аргинина.

В результате хранения зерна сои происходит снижение содержания масла у сортов Лидия, Соната, Даурия в пределах 0,1–1,8% во всех вариантах хранения (лаборатория, склад), однако у сорта Гармония и у дикой формы КА-1344 масличность, напротив, растет (рис. 2). Наибольший рост масличности наблюдается в условиях лаборатории: у сорта Гармония – 1,8, у дикой формы КА-1344 – 2,3%, а в условиях типового склада 0,7 и 0,8% соответственно.

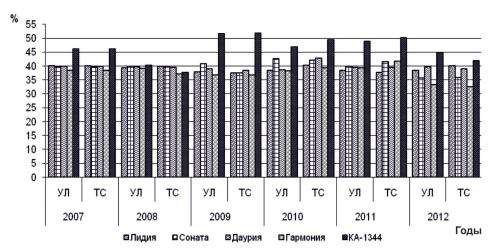


Рис. 1. Изменение содержания белка в зерне сои в течение пяти лет хранения в условиях лаборатории и типового склада (УЛ – условия лаборатории; ТС – типовой склад)

Таблица 1 Изменения содержания незаменимых аминокислот в зерне сои при хранении в условиях лаборатории и типового склада, %

Аминокислота	Лидия			Соната			Даурия			Гармония			KA-1344		
	до	после		70	после		70	после		70	после			после	
		УЛ	TC	до	УЛ	TC	до	УЛ	TC	до	УЛ	TC	до	УЛ	TC
Аланин	7,5	4,4	4,5	7,5	4,7	4,6	7,5	4,5	4,5	7,2	3,9	3,9	7,1	4,3	4,8
Лизин	6,9	5,7	6,1	6,7	5,7	5,8	6,7	5,7	5,8	7,0	5,8	6,0	6,6	5,6	5,3
Аргинин	8,1	6,9	7,5	8,2	7,2	7,8	8,1	7,1	7,4	8,5	6,8	7,3	8,2	9,2	8,4
Фенилаланин	3,6	4,6	4,7	3,6	4,8	4,8	3,6	4,7	4,7	3,7	4,5	4,4	4,1	5,2	5,1
Лейцин	9,8	9,0	9,7	9,8	8,5	9,3	9,9	8,8	9,9	10,0	9,5	10,8	9,1	8,8	7,5
Изолейцин	4,8	4,8	4,8	5,4	5,2	5,2	7,2	5,1	4,6	7,2	4,7	4,2	7,1	6,6	6,9
Валин	6,9	8,6	9,8	7,4	7,8	8,4	6,7	7,9	8,7	7,0	9,6	10,5	8,0	6,0	6,2

Примечание. Здесь и в табл. 2: до – исходные данные, после – через 5 лет хранения; УЛ – условия лаборатории; ТС – типовой склад.

Рис. 2. Изменение содержания масла в зерне сои в течение пяти лет хранения в условиях лаборатории и типового склада (УЛ – условия лаборатории; ТС – типовой склад)

В соевом масле пять основных жирных кислот: две насыщенные (пальмитиновая, стеариновая) и три ненасыщенные (олеиновая, линолевая и линоленовая). Нами отмечено, что количество пальмитиновой кислоты (C_{16}) снижается по всем вариантам хранения: в условиях лаборатории от 0,3 до 0,6, в условиях типового склада — от 0,1 до 0,8%. Доля стеариновой кислоты (C_{18}) в семенах после пяти лет хранения увеличивается в условиях типового склада на 0,3—1,0, в лаборатории — на 0,4—0,6%.

Зерно сои характеризуется высоким содержанием ненасыщенных жирных кислот в составе

триацилглицеролов, наибольшая относительная доля принадлежит линолевой кислоте ($C_{18:2}$). У изучаемых нами сортов данный показатель варьирует в зависимости от сорта в пределах 51,8-53,3% от их общего количества, у дикой сои -47,2%. Вторым важным показателем в жирно-кислотном составе растительного масла является олеиновая кислота ($C_{18:1}$), содержание которой у дикорастущей сои составляет 20,2, а у культурной -11,7-15%. Количественное соотношение этих жирных кислот в масле определяет направление его использования. Судить об изменениях жирно-кислотного состава можно по данным табл. 2.

Таблица 2 Изменение жирно-кислотного состава зерна сои при хранении в условиях лаборатории и типового склада, %

Лидия Соната Даурия Гармония KA-1344 Кислота после после после после после до до до до до УЛ TC УЛ TC УЛ TC УЛ УЛ TC TC 9,4 9,8 9,2 9,7 9,1 9,3 9,4 9,1 9,3 9,9 9,4 9,7 9,2 8,9 8,4 Пальмитиновая Стеариновая 3,3 3,8 4,0 3,3 3,7 3,9 3,3 3,8 4,1 3,4 3,9 4,4 3,1 3,7 3,4 10,0 3,2 13,2 2,9 11,7 6,7 15 5,1 6,6 6,3 3,4 5,3 20,2 10,7 6,3 Олеиновая Линолевая 52.2 52.9 53.3 51,8 52.7 52.3 52.2 52.9 53.3 53.3 54.2 47.2 48.5 49.3 53.8 7,6 9,9 9,0 7,6 9,8 9,3 9,5 Линоленовая 6,9 9,8 6,6 6,9 10,9 11,4 11,7 11,9 Линолевая: 7,5 6,9 5,4 7,8 5,3 7,5 6,9 5,4 5,7 5,6 4,9 4,1 4,1 5,8 4,1 линоленовая

В процессе хранения доля олеиновой кислоты значительно снижается. Причем для культурной сои данное снижение более существенно, если семена хранить при положительных температурах, т.е. в условиях лаборатории. Так, у сорта Лидия снижение составило 6,8% в лаборатории и 3,3 — в условиях склада, Соната — 9,9 и 8,4, Даурия — 10,2 и 6,9, Гармония — 8,2 и 6,4% соответственно. У дикой сои, наоборот, при хранении в складе содержание олеиновой кислоты снижалось больше, чем в лаборатории: 13,8% против 9,5.

Увеличение доли линолевой кислоты в наших исследованиях наблюдается на фоне снижения олеиновой. Это происходит и в условиях лаборатории, и в условиях типового склада — на 0,5-1,3 и $0,5-2,1\,\%$ по всем сортам.

Известно, что для жирно-кислотного состава семян благоприятным считается соотношение между линолевой и линоленовой кислотами в составе триацилглицеролов в диапазоне 4:1–10:1 [7]. Анализируя данные табл. 2, можно утверждать, что масла, выделенные из зерна сои рассматриваемых сортов, вполне удовлетворяют этим требованиям. Следует отметить, что зерно сои, хранившееся в условиях типового склада,

характеризуется повышенным относительным содержанием полиненасыщенных жирных кислот (линолевой и линоленовой). Видимо, линоленовая кислота ($C_{18\cdot 3}$) придает холодоустойчивость зерну не только в период прорастания, помогая растительному организму адаптироваться к стрессовым ситуациям, но и в период хранения, так как семя - живой организм, и в период покоя биохимические процессы не прекращаются, а только замедляются. Те условия, которые складываются при хранении зерна в условиях типового склада, также заставляют зерно приспосабливаться к переменным температурам, особенно в зимний период хранения, что, вероятно, и способствует увеличению доли линоленовой кислоты в семенах. Кроме этого, после прекращения действия пониженных температур гидролитические процессы в зерне сои усиливаются, тем самым способствуя реверсии запаха и цвета масла [8-10], т.е., с пищевой точки зрения, чтобы масло как можно дольше не прогоркало, ее содержание должно быть минимальным. Следовательно, если сравнивать варианты хранения, применявшиеся в наших исследованиях, то условия лаборатории, при которых температура и влажность воздуха варьируют

незначительно, являются более благоприятными для использования хранимого зерна в перерабатывающей промышленности.

Дикорастущая соя по своему генетическому происхождению более устойчива к неблагоприятным условиям среды, поэтому ни условия, ни период хранения не повлияли на качественный состав полиненасыщенных жирных кислот. Для получения масла из такого зерна необходима рафинация.

выводы

- 1. За 5 лет хранения в зерне сои происходит снижение общего количества белка и масла. В среднем у всех исследованных объектов в условиях лаборатории снижение составило 2,4 и 0,9, в условиях типового склада 2,9 и 0,1% соответственно, за исключением сорта сои Гармония, у которого выявлено увеличение содержания масла в зерне на 1–1,7%, и дикорастущей сои в условиях типового склада на 2,3%.
- 2. В процессе хранения происходит снижение содержания незаменимых аминокислот как

- в условиях типового склада, так и в условиях лаборатории: аланина на 21—22, лизина на 17, аргинина на 15, лейцина на 10 и изолейцина на 18—19%. Содержание таких аминокислот, как фенилаланин и валин, наоборот, увеличивается у всех изучаемых сортов сои независимо от условий хранения на 33 и 17—18% соответственно.
- 3. В процессе хранения зерна сои доля олеиновой кислоты в получаемом масле значительно снижается (от 33 до 68% в условиях типового склада и от 47 до 78 в условиях лаборатории), а доля линолевой, наоборот, увеличивается по всем сортам (на 0,5–2,1 и 0,5–1,3% соответственно).
- 4. Зерно сои, хранившееся в условиях типового склада, характеризуется повышенным относительным содержанием полиненасыщенных жирных кислот (линолевой и линоленовой). Следовательно, условия лаборатории, при которых температура и влажность воздуха варьируют незначительно, являются более благоприятными для последующего использования хранимого зерна в перерабатывающей промышленности.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Вавилов П.П., Посыпанов Г.С. Бобовые культуры и проблема растительного белка. М.: Россельхозиздат, 1983. 256 с.
- 2. *Друшляг Н. Г.* Изменения физиолого-биохимических характеристик семян гороха (*Pisum sativum* L.) при хранении и обработке фитогормонами: дис. ... канд. биол. наук. Воронеж, 2009. 115 с.
- 3. *Изменение* биохимических показателей в зерновке риса при потере жизнеспособности / Н. П. Красноок, Р. И. Поварова, И. А. Вишнякова, Е. А. Шутова // Изв. вузов СССР. Пищ. технология. -1975. -№ 2. C. 28–30.
- 4. *Кретович В. Л.* Физиолого-биохимические основы хранения зерна. М.; Л.: Изд-во АН СССР, 1945. C.136.
- 5. Крокер В., Бартон Л. Физиология семян. М.: Иностр. лит., 1955.
- 6. Доспехов Б. А. Методика полевого опыта. М.: Агропромиздат, 1985. 351 с.
- 7. Влияние биологических особенностей сорта и условий выращивания сои на биохимический состав семян / В.С. Петибская, С.В. Назаренко, В.Ф. Баранов [и др.] // Изв. вузов. Пищ. технология. − 2000. № 4. C. 14–18.
- 8. Щербаков В. Г. Биохимия и товароведение масличного сырья. М.: Пищ. пром-сть, 1979. 336 с.
- 9. *Трисвятский Л. А., Мельник Б. Е.* Технология приема, обработки, хранения зерна и продуктов его переработки. М.: Колос, 1983. 351 с.
- 10. *Карпов Б. А.* Технология послеуборочной обработки и хранения зерна. М.: Агропромиздат, 1987. 288 с.
- 1. Vavilov P. P., Posypanov G. S. *Bobovye kul 'tury i problema rastitel 'nogo belka*. Moscow: Rossel 'khozizdat, 1983. 256 p.
- 2. Drushlyag N.G. *Izmeneniya fiziologo-biokhimicheskikh kharakteristik semyan gorokha (Pisum sati-vum L.) pri khranenii i obrabotke fitogormonami* [dis. ... kand. biol. nauk]. Voronezh, 2009. 115 p.
- 3. Krasnook N. P., Povarova R. I., Vishnyakova I. A., Shutova E. A. *Izmenenie biokhimicheskikh pokazateley v zernovke risa pri potere zhiznesposobnosti* [Izv. vuzov SSSR. Pishch. tekhnologiya], no. 2 (1975): 28–30.

АГРОНОМИЯ, ЛЕСНОЕ ХОЗЯЙСТВО

- 4. Kretovich V.L. *Fiziologo-biokhimicheskie osnovy khraneniya zerna*. Moscow; Leningrad: Izd-vo AN SSSR, 1945. p. 136.
- 5. Kroker V., Barton L. Fiziologiya semyan. Moscow: Inostr. lit., 1955.
- 6. Dospekhov B.A. Metodika polevogo opyta. Moscow: Agropromizdat, 1985. 351 p.
- 7. Petibskaya V. S., Nazarenko S. V., Baranov V. F. i dr. *Vliyanie biologicheskikh osobennostey sorta i usloviy vyrashchivaniya soi na biokhimicheskiy sostav semyan* [Izv. vuzov. Pishch. tekhnologiya], no. 4 (2000): 14–18.
- 8. Shcherbakov V. G. *Biokhimiya i tovarovedenie maslichnogo syr'ya*. Moscow: Pishch. prom-st', 1979. 336 p.
- 9. Trisvyatskiy L.A., Mel'nik B.E. *Tekhnologiya priema, obrabotki, khraneniya zerna i produktov ego pererabotki.* Moscow: Kolos, 1983. 351 p.
- 10. Karpov B.A. *Tekhnologiya posleuborochnoy obrabotki i khraneniya zerna*. Moscow: Agropromizdat, 1987. 288 p.

CHANGING OF BIOCHEMICAL CONTENT OF SOYA GLYCINE MAX AND GLYCINE SOJA WHILE LONG-TERM STORING IN DIFFERENT CONDITIONS

Vyskvarka G. S., Semenova E.A., Selikhova O.A., Tikhonchuk P.V.

Key words: soya, grain, storage, protein, oil, aminoacids, fatty acids

Abstract. The paper reveals results on studying the influence of conditions and period of storing on biochemical content of cultivated soya grain and wild soya grain in 2007-2012. The soya grain of Sonata variety, Garmoniya variety, Lidiya variety, Dauriya variety and wild KA-1344 variety was stored in laboratory (18–22 °C and humidity 60–70%) and warehouse (maximum temperature in summer is +35 °C, maximum temperature in winter is -33 °C) in order to reveal changes in protein, oil and their qualitative concentration during 5 years. The data obtained was compared with initial data and the analysis demonstrated that protein and oil concentration was reduced during 5 years. In laboratory concentration of protein was reduced 2.4% and oil was reduced 0.9% whereas storage at warehouse demonstrated 2.9% and 0.1% correspondently. Garmoniya variety revealed increasing of oil in soya grain on 1-1.7% and wild soya at the warehouse on 2.3%. Concentration of essential aminoacids while storing at the warehouse and in laboratory was reduced: alanine concentration was reduced on 21-22%, lysine was reduced on 17%, arginine concentration was reduced on 15%, leucine was reduced on 10% and isoleucine on 18–19% whereas concentration of phenylalanyl and valine was reduced on 33% and 17–18% correspondently. The paper points out that share of oleinic acid is reduced in soya grain whereas linoleic acid is increased in all the varieties studied. Soya grain stored at the warehouse contains high polyunsaturated fatty acids (linoleic acid and octadecatrienoic acid); therefore, laboratory storing is more favourable for storing soya grain in order to use it in processing industry.